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Figure 1: A 100k lights scene from Ant-Man © Marvel Studios. Our new system is able to render specular highlights better than
a pure tree-based approach thanks to resampling.

ABSTRACT
We propose a new hybrid method for efficiently sampling many

lights on a scene that combines a simplified spatial tree with a

resampling stage. Building on previous methods that work with

a split or cut of the light tree, we introduce the idea of probabilis-

tic splitting to eliminate noise boundaries. This yields a small but

unbounded subset of lights that is then reduced to a smaller and

bounded set which is used for full light/BSDF evaluation for resam-

pling. Our main contribution is the stochastic splitting formulation

combined with a Reservoir Set concept which can limit samples

to an arbitrary number, allowing two stages of resampling with

different heuristics.
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1 INTRODUCTION
Rendering with many lights – on the order of millions or even

thousands – is a challenging problem. Efficiently choosing the
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relevant emitters to a shading point involves finding a balance

between performance and variance. We seek to render with as few

shadow rays per pixel as possible. It is therefore key to design a

good importance sampling technique.

Ideally we would use a perfect scheme where the probability of

choosing a light is linearly proportional to the BSDF, light power,

geometric decay and occlusion. But this is not always possible in

an offline render with complex scenes and shading.

2 PREVIOUS WORK
Many light sampling techniques have gained attractiveness in re-

cent years, mainly driven by novel light tree-based solutions and

new techniques tailored for real-time ray tracing on the GPU.

Most of the light-tree solutions share many similarities with

the Lightcuts technique introduced by Walter et al. [Walter et al.

2005] in the context of many Virtual Point Lights. That is, a binary

space partition clusters the lights in a hierarchy, where each cluster

approximates the lighting contained in the sub-tree. Given a shading

point, selecting the lights that contribute the most to the surface

illumination is done by walking down the tree, discarding sub-trees

with less contribution. However, finding a metric that represents

a good cluster importance is challenging and depends heavily on

the quality of the tree construction but also on the tree traversal

decisions.

In our previous work [Conty Estevez and Kulla 2018], we orga-

nize millions of heterogeneous lights into a BVH tree built using a

modified surface heuristic region that better regroups lights with

similar orientation and emission profile. The tree is stochastically

traversed based on an importance measure from an approximate

lighting contribution. An Adaptive Tree Splitting strategy (ATS)

based on a quality score is used to force the exploration of multiple

branches to mitigate the initial poor importance estimation. A GPU

implementation has been proposed by [Moreau and Clarberg 2019]

and further improved using a 2-levels BVH for faster tree rebuild

in the context of dynamic illumination [Moreau et al. 2022]. The

solution improves the sampling quality by an order of magnitude
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and also support participating media. However, the method may

introduce sampling discontinuities due to the deterministic choice

of splitting that depends on the spatial location of the shading point.

Stochastic Lightcuts [Lin and Yuksel 2020; Yuksel 2020] addresses

the correlation problem arising from the use of a predetermined

representative light in the original Lightcuts hierarchy. Instead, the

representative light is chosen stochastically by traversing the tree

down to a leaf, similar to [Conty Estevez and Kulla 2018]. However,

performing a tree traversal for each visited cluster node can be

computationally expensive. To minimize the cost, cuts are shared

across the image space and interleaved to hide any correlation

artifacts. However, the cost saving is limited to the primary hits

and do not account for the presence of participating media.

Machine learning based methods [Pantaleoni 2019; Vévoda et al.

2018; Wang et al. 2021] improve the quality of Lightcuts by learning

the visibility of light samples from the previous lighting results.

These methods usually require a 3D grid data structure to cache

and update the cut probabilities from the learned visibility. How-

ever, maintaining such a data structure is challenging because our

production scenes can be massively complex, with highly detailed

surfaces at multiple scales, as shown in Fig 1. In addition, partici-

pating media rendering with many lights is not addressed in these

techniques.

Resampled Importance Sampling (RIS) [Talbot 2005; Talbot et al.

2005] propose an interesting set ofMonte Carlo estimators that have

been used in the context of real-time raytracing with many lights

on the GPU by Bitterili et al [Bitterli et al. 2020]. Using a spatio-

reservoir sampling technique (ReSTIR), an approximate initial set of

light samples is selected from an energy-based importance measure

and successively resampled locally, spatially, and temporally. The

end result is a well-selected light sample that better represents the

sample product of the incident light with the bsdf. A key element

of the technique is the use of a weighted reservoir sampler [CHAO

1982], which operates in linear time on the input without prior

knowledge of the candidates importance. This approach avoids the

costly construction and storage of CDF tables, making the solution

tailored for GPU applications. Boksansky et al [Boksansky et al.

2021] later extended the solution to handle secondary rays in world

space using a 3D grid, but with the aforementioned limitation of

such data structure. Many-lights in the presence of participating

media is not also addressed.

Our solution leverages Adaptive Tree Splitting [Conty Estevez

and Kulla 2018] with a reservoir resampling approach in the spirit

of [Bitterli et al. 2020]. We propose a novel stochastic splitting

strategy, which both simplifies the tree structure and removes the

sampling discontinuities seen in our previous work. We use a reser-

voir resampling solution to select a small bounded set of good light

sources from the unbounded set obtained during the light tree tra-

versal. We introduce a new reservoir set that behaves like a n-size

weighted reservoir sampler with replacement, but without dupli-

cates. In a second step, we generate samples from the selected light

sources and use the extensive BSDF evaluation and resampling to

retain well chosen light samples. Our solution is GPU friendly as

we operate in a streamline fashion using reservoir samplers with

a minimal storage cost. It is not limited to primary bounces and

naturally enables the support of participating media.

3 OVERVIEW OF OUR SAMPLING
In our previous research [Conty Estevez and Kulla 2018], we em-

ployed a complex sampling tree that integrated both spatial and

emitter orientation partitioning. This design enabled us to estab-

lish an importance measure that considered the orientation of the

light and its impact on the shading point. Although beneficial, this

approach incurred a higher traversal cost. However, this cost was

justified as the traversal process was solely accountable for gener-

ating the final samples. In our current approach, we have opted to

streamline this traversal process for enhanced speed. Instead of re-

lying entirely on the traversal for sample quality, we now defer the

refinement of the samples to a subsequent resampling stage. This

shift not only accelerates the traversal process but also improves

the quality of the final output through effective resampling.

The tree structure comprises clusters of emitters, denoted as

𝐶1,𝐶2, . . . ,𝐶𝑛 (representing interior nodes), and individual single

emitters, represented as 𝐸1, 𝐸2, . . . , 𝐸𝑛 (constituting the leaves). We

employ a tree importance heuristic, 𝐻 , to guide the traversal. This

heuristic is exclusively spatial when evaluating clusters, and we

will refer to this relaxed version as ℎ(), but it will incorporate
directionality when assessing individual emitters, 𝐻 (). This aspect
of the heuristic proves particularly effective and precise for flat

and spot light emitters. Consequently, the sampling pipeline can

be summarized as follows:

Figure 2: Pipeline of the sampling process from the scene
lights to shadow rays.

When employing tree traversal with splitting, we acquire a lim-

ited yet unbounded set of candidate lights, guided by the tree’s

importance heuristic. Notably, this heuristic tends to be less effec-

tive for larger clusters near the top of the tree, resulting in a mix-

ture of both suitable and unsuitable candidates. The effectiveness of

these candidates is more accurately assessed using the cost-efficient

heuristic at the tree’s leaves (the actual emitters). This assessment

forms the basis of our initial resampling process, which utilizes a

reservoir set. By employing the same unnormalized importance

value derived from the tree, we achieve two key objectives:

• We limit the number of candidates to a manageable set, fa-

cilitating a more comprehensive and resource-intensive re-

sampling process.

• We effectively filter out the less desirable candidates that

are often mistakenly prioritized by the cluster importance

heuristic during traversal.

By combining one light traversal and two resampling stages we

go from many 𝑁 lights in the scene to 𝑁 ′ unbounded candidate
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Symbol Meaning Example

𝑁 total lights in the scene many

𝑁 ′ ≤ 𝑁 candidates from the split tree traversal 1 − 60
𝑚 ≤ 𝑁 ′ reduced candidates by resampling with 𝐻 16

𝑠 ≤ 𝑚 reduced shadow rays by resampling with 𝐹 1 − 4
Table 1: Semantics of the number used for our tree sampling

lights, then narrow down to𝑚 user controlled candidates and finally

𝑠 shadow rays. Satisfying 𝑠 ≤ 𝑚 ≤ 𝑁 ′ ≤ 𝑁 we can summarize the

semantics of the numbers as shown in Table 1

Following the tree traversal, we obtain a set of𝑁 ′ light candidates
denoted as 𝐿𝑖 , each associated with a probability 𝑃𝑡𝑟𝑒𝑒 (𝐿𝑖 ). This
probability is well-defined, normalized, and deterministic. Up until

this stage of the process, a simplified heuristic ℎ(𝐶) is utilized for

interior nodes (clusters), and a better, orientation aware, heuristic

𝐻 (𝐿𝑖 ) for the leaf emitters. The resampling weight𝑊ℎ comes from

the same heuristic importance

𝐼ℎ (𝐿𝑖 ) =
𝐻 (𝐿𝑖 )

𝑃𝑡𝑟𝑒𝑒 (𝐿𝑖 )

However, once we achieve a bounded subset of 𝑚 lights, the

focus shifts to sampling the candidate lights 𝐿𝑖 . At this point, we

conduct a comprehensive evaluation of the Bidirectional Scattering

Distribution Function (BSDF) and the irradiance 𝐸 of a random light

sample 𝑆𝑖 from light 𝐿𝑖 . Subsequently, the final reservoir sampling

is based on the outcomes of this full evaluation

𝐹 (𝑆𝑖 ) = 𝑓 (𝜔𝑖 , 𝜔𝑜 )
𝐸 (𝑆𝑖 )

𝑃𝑡𝑟𝑒𝑒 (𝐿𝑖 )𝑃 (𝑆𝑖/𝐿𝑖 )
𝑊𝑚𝑖𝑠𝑊ℎ (𝐿𝑖 ) (1)

where the function 𝑓 denotes the BSDF at the given surface,

and𝑊𝑚𝑖𝑠 refers to the Multiple Importance Sampling (MIS) weight,

which ignores resampling probabilities for correctness. The second

resampling pass operates on importance 𝐼𝑓 (𝑆𝑖 ) = 𝐹 (𝑆𝑖 ) yielding
a final weight𝑊𝑓 (𝑆𝑖 ). This process effectively narrows down the

sample pool for generating the final 𝑠 shadow rays. While typically

a single shadow ray is sufficient, scenes characterized by significant

shadow variance stand to gain from the use of multiple shadow

rays. The final contribution of the sample 𝑆𝑖 is 𝐹 (𝑆𝑖 )𝑊𝑓 (𝑆𝑖 ) and
boils down to

𝑓 (𝜔𝑖 (𝑆𝑖 ), 𝜔𝑜 )
𝐸 (𝑆𝑖 )

𝑃𝑡𝑟𝑒𝑒 (𝐿𝑖 )𝑃 (𝑆𝑖/𝐿𝑖 )
𝑊𝑚𝑖𝑠 𝑊ℎ (𝐿𝑖 )𝑊𝑓 (𝑆𝑖 )

Which is the usual Monte Carlo weight with the addition of𝑊ℎ

and𝑊𝑓 from the resampling. In summary, our sampling will call:

• Inexpensive heuristic ℎ() many times during traversal,

• Orientation aware heuristic 𝐻 () for leaves and first resam-

pling,

• Full light/BSDF evaluation𝑚 times for the second resampling

and

• Full shadow ray trace 𝑠 times,

where𝑚 and 𝑠 are render parameters. The former controls the

quality of the chosen samples and the latter how many shadow

rays we want to trace per shading point.

4 RESERVOIR SET
A weighted reservoir sampler usually takes an unlimited number

of items or candidate samples and selects a random one based on

an unnormalized importance measure. For our system to work

we needed to extend the concept to produce more than just one

result from the inputs. That is, from an unlimited input set, select a

random subset of 𝑛 distinct samples chosen according to the same

importance measure.

To accomplish this, we create 𝑛 independent weighted reservoir

samplers, each containing a single item, and distribute the input

candidates among them randomly. And to avoid clumping, we

perform this shuffling with a random permutation whose seed

changes every 𝑛 input candidates.

Figure 3: Reservoir Set

The result is that every reservoir in the set sees a random sub-

sequence of the input stream. This randomization strategy effec-

tively eliminates any bias in the order of the input candidates. Each

of the 𝑛 reservoirs selects a single candidate, resulting in a pool of 𝑛

or fewer candidates, each one chosen according to the importance

measure. Additionally, this method satisfies several noteworthy

conditions:

• After processing 𝑘 × 𝑛 candidates, each reservoir has seen

exactly 𝑘 of them.

• Every candidate is allocated to exactly one reservoir, ensur-

ing that there are no duplicates in the output.

• When 𝑘 ≥ 𝑛, all reservoirs will be filled. Conversely, if 𝑘 ≤ 𝑛,

the output will precisely match the input set.

The proof that our reservoir set is unbiased is left to be inves-

tigated, but we found connections with the Stratified Resampled

Importance Sampling method described by Talbot in his master

thesis [Talbot 2005].

Building upon this approach, we implement the operation

ReservoirSet(𝑈 , 𝑓 , 𝑛) → 𝐿.

This function takes an input set𝑈 of unlimited size and outputs a

set 𝐿 consisting of 𝑛 or fewer candidates, each selected based on 𝑓 ,

the designated importance measure.

5 LIGHT HIERARCHY CONSTRUCTION
In our approach, we adopt the light emitter tree structure from

the preceding paper but introduce a significant simplification: clus-

ters of light emitters no longer maintain orientation bounds. We

observed that when various types of light emitters are grouped

together, the combined orientation bounds often become irrelevant.
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Therefore, we now store these bounds exclusively at the leaf emit-

ters of the tree, where they effectively limit a light’s influence, as

originally intended.

This modification streamlines the traversal process in the interior

nodes of the tree, enhancing its efficiency. During traversal, we

retain solely the spatial component of the importance heuristic

from our prior work, up until we encounter a leaf emitter. It is at

this stage that we include the orientation factor in our evaluation.

We can, for simplicity, assume a binary tree, although the actual

topology is an implementation detail. Regardless of this, sampling

in the tree is a random walk where we use the heuristic to choose

a path from the root to the emitters.

Ultimately, a single traversal of our unsplit tree results in the

selection of exactly one light emitter. However, when cluster nodes

are split, the traversal produces several light emitters. These 𝑁 ′

emitters are then utilized in the subsequent resampling phase, a

key advancement in our methodology described in the previous

section.

6 CLUSTER AND LEAF EMITTER
IMPORTANCE

Our clusters of lights are simply defined by a bounding sphere and

total contained energy. We simplified our heuristic to ignore any

orientation of the emitters inside, and we follow an inverse square

distance decay limited by the bounds. That is, given a cluster, 𝐶 ,

with center 𝐶𝑐 , radius 𝐶𝑟 , and energy 𝐶𝑒 we define

ℎ(𝐶) = 𝐼 (𝐶, 𝑃)
√
𝐶𝑒

max(𝐶𝑟 , |𝐶𝑐 − 𝑝 |)2
,

where 𝑝 is the shading point, and 𝐼 (𝐶, 𝑝) is a conservative irradiance
estimation from the cluster to the shading point. This irradiance

estimation is computed from the angle of the 𝐶𝑐 − 𝑝 vector with

the surface normal 𝜃𝑛 and the angle 𝜃𝑐 subtended by the bounding

sphere at the shading point. Then

𝐼 (𝐶, 𝑝) = cos(max(0, 𝜃𝑛 − 𝜃𝑐 )),

completes the definition. Note, we are using the square root of

the energy

√
𝐶𝑒 , which was empirically found to work better than

the physical estimation to avoid sampling starvation due to large

clusters where the heuristic is very inaccurate.

For the leaves of the tree representing a single emitter or light,

𝐿, we do use the orientation bounds as in our previous work. This

is especially useful with spotlights, where the light is contained

within a small cone. We summarize this logic in a coverage function

Cov(𝐿, 𝑝) that returns a value in [0, 1] to clip the energy. Then, at

the leaf level, a more accurate heuristic is given by

𝐻 (𝐿) = Cov(𝐿, 𝑃) 𝐼 (𝐿, 𝑝) 𝐿𝑒
max(𝐿𝑟 , |𝐿𝑐 − 𝑝 |)2

.

Here, we give more confidence to the light energy 𝐿𝑒 by forgoing

the square root, and we trust the orientation bounds to be more

meaningful via the coverage function.

7 LIGHT PROBABILITY FROM TRAVERSAL
In the absence of splitting, the probability of selecting a light cluster

𝐶 from its parent𝐶 ↑ in the tree, based on importance, is denoted as

𝑃𝑖 (𝐶 |𝐶 ↑). The probability of reaching cluster 𝐶 can be recursively

defined as follows:

𝑃𝑛𝑜𝑠𝑝𝑙𝑖𝑡 (𝐶) = 𝑃𝑖 (𝐶 |𝐶 ↑)𝑃𝑛𝑜𝑠𝑝𝑙𝑖𝑡 (𝐶 ↑)
This calculation continues up to the root of the tree. However, when

splitting is introduced, we must consider a new event, 𝑠 (𝐶), which
represents the splitting of the cluster. This involves traversing all

of its children instead of selecting one randomly. The probability

of splitting, denoted as 𝑃 (𝑠 (𝐶)) and simplified here as 𝑃𝑠 (𝐶), is
constrained to decrease as we descend the tree:

𝑃𝑠 (𝐶) ≤ 𝑃𝑠 (𝐶 ↑)
Additionally, we set the splitting across the entire tree using the

same random number for a given hit point on the geometry, without

any warping. Logically this translates to 𝑠 (𝐶) → 𝑠 (𝐶 ↑), meaning

that splitting a cluster implies that all of its predecessors are also

split. The probability of not splitting, denoted as 𝑃𝑠 (𝐶), is simply

defined as 1 − 𝑃𝑠 (𝐶). Thus, the probability of our split traversal

reaching a cluster is given by:

𝑃 (𝐶) = 𝑃𝑠 (𝐶 ↑)·𝑃 (𝐶 ↑ |𝑠 (𝐶 ↑))·1+𝑃𝑠 (𝐶 ↑)·𝑃 (𝐶 ↑ |𝑠 (𝐶 ↑))·𝑃𝑖 (𝐶 |𝐶 ↑).
But 𝑃 (𝐶 ↑ |𝑠 (𝐶 ↑)) given our split restrictions also equals 1, so the

simplified equation is just

𝑃 (𝐶) = 𝑃𝑠 (𝐶 ↑) + 𝑃𝑠 (𝐶 ↑) · 𝑃 (𝐶 ↑ |𝑠 (𝐶 ↑)) · 𝑃𝑖 (𝐶 |𝐶 ↑) . (2)

Then we just need to define the conditional probability for reaching

a cluster knowing that it has not been split 𝑃 (𝐶 |𝑠 (𝐶)), which has

another recursive definition:

𝑃 (𝐶 |𝑠 (𝐶)) = 𝑃𝑠 (𝐶 ↑ |𝑠 (𝐶))+𝑃𝑠 (𝐶 ↑ |𝑠 (𝐶))·𝑃 (𝐶 ↑ |𝑠 (𝐶 ↑))·𝑃𝑖 (𝐶 |𝐶 ↑) .
Here,

𝑃𝑠 (𝐶 ↑ |𝑠 (𝐶)) =
𝑃𝑠 (𝐶 ↑) − 𝑃𝑠 (𝐶)

1 − 𝑃𝑠 (𝐶)
represents the probability of splitting the parent of cluster 𝐶 ↑
given that 𝐶 has not been split. Conversely, 𝑃𝑠 (𝐶 ↑ |𝑠 (𝐶)) is the
complement to 1.

With these equations, we can calculate probabilities for any

cluster in the tree, though our primary interest lies in the leaves.

Nevertheless, we can simplify the mathematics to aid the implemen-

tation. To this end, we will compute two quantities for every cluster

as we traverse down the tree: 𝑃𝑠 (𝐶), which we already know, and

𝑇 (𝐶), defined as:

𝑇 (𝐶) =
{
1 if 𝐶 = root

𝑃𝑖 (𝐶 |𝐶 ↑) · (𝑃𝑛𝑠 (𝐶) + (1 − 𝑃𝑛𝑠 (𝐶)) ·𝑇 (𝐶 ↑)) otherwise

(3)

Here, 𝑃𝑛𝑠 (𝐶) = 𝑃𝑠 (𝐶 ↑ |𝑠 (𝐶)) is used for brevity. When we stop

at a cluster in the tree, we can easily compute the probability of

reaching it as:

𝑃 (𝐶) = 𝑃𝑠 (𝐶 ↑) + (1 − 𝑃𝑠 (𝐶 ↑)) ·𝑇 (𝐶) . (4)

This approach streamlines the process of determining the proba-

bility of reaching a specific light in the tree while dealing with the

complexities of cluster splitting.

In Algorithm 1 we provide a recursive implementation that calls

a Visit() procedure when it gets to a leaf emitter. This procedure

would be responsible for the first resampling stage. To begin the

traversal, one would just call Traverse(root, 1, 𝜉𝑠 , 𝜉𝑡 ), where 𝜉𝑠 is the
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Algorithm 1 Stochastic splitting tree traversal

1: procedure Importance(𝐶)
2: return 𝐻 (𝐶) if 𝐶 is leaf, otherwise ℎ(𝐶)
3: end procedure
4: procedure Traverse(𝐶,𝑇 , 𝜉𝑠 , 𝜉𝑡 )
5: if 𝐶 is leaf then
6: PDF← 𝑃𝑠 (𝐶 ↑) + (1 − 𝑃𝑠 (𝐶 ↑)) ·𝑇
7: Visit(𝐶, PDF)
8: else
9: 𝐼𝑙 , 𝐼𝑟 ← Importance(𝐶𝑙 ), Importance(𝐶𝑟 )
10: split← 𝜉𝑠 < 𝑃𝑠 (𝐶)
11: 𝑃𝑙 ← 1 if split, otherwise 𝐼𝑙

𝐼𝑙+𝐼𝑟
12: 𝑃𝑟 ← 1 if split, otherwise 1 − 𝑃𝑙
13: 𝜉

′
𝑡 ← 𝜉𝑡 if split, otherwise warp(𝜉𝑡 , 𝑃𝑙 , 𝑃𝑟 )

14: ⊲ Probability of splitting 𝐶 ↑ if 𝐶 is not split

15: 𝑆𝑛𝑠 ← (𝑃𝑠 (𝐶 ↑) − 𝑃𝑠 (𝐶)) /(1 − 𝑃𝑠 (𝐶))
16: ⊲ Probability of 𝐶 if 𝐶 is not split

17: 𝑃𝑛𝑠 ← 𝑆𝑛𝑠 + (1 − 𝑆𝑛𝑠 ) ·𝑇
18: if 𝜉𝑡 < 𝑃𝑙 then
19: Traverse(𝐶𝑙 , 𝑃𝑛𝑠 · 𝑃𝑙 , 𝜉𝑠 , 𝜉

′
𝑡 )

20: end if
21: if 𝜉𝑡 ≥ 𝑃𝑙 then
22: Traverse(𝐶𝑟 , 𝑃𝑛𝑠 · 𝑃𝑟 , 𝜉𝑠 , 𝜉

′
𝑡 )

23: end if
24: end if
25: end procedure

random number for the split or cut, and 𝜉𝑡 is the random number

for the rest of the traversal. Note a single random number would

also be possible by warping when splitting stops, but this makes

the code cleaner.

8 STOCHASTIC SPLITTING
We consider as problematic those clusters whose bounding radius is

large compared to the distance from the cluster center to the shading

point. The simplest possible heuristic for splitting a cluster is the

one that, given the shading point 𝑝 , assigns a splitting probability

𝑃𝑠 (𝐶) such as

𝑃𝑠 (𝐶) =
{
1 if |𝐶𝑐 − 𝑝 | < 𝐶𝑟

0 otherwise

.

But using a smooth function like a Cauchy bell shaped curve like

𝑃𝑠 (𝐶) =
1

1 + 𝑡2/𝛾2
where 𝑡 =

max( |𝐶𝑐 − 𝑝 | −𝐶𝑟 , 0)
𝐶𝑟

(5)

produces a smoother picture and introduces a render parameter

𝛾 to control how aggressive splitting is. The greater the 𝛾 value, the

more candidates the traversal will feed into the resampling. Note

this curve satisfies our constraint 𝑃𝑠 (𝐶) ≤ 𝑃𝑠 (𝐶 ↑) since the radius
𝐶𝑟 always decreases as we walk down the cluster tree. It is also

possible to measure 𝑡 from the center of the cluster instead of the

edge as in our proposal. This curve does not satisfy the constraint,

but our implementation enforces it by clipping the curves. The

result is still useful for experimenting with lower splitting rates.

9 PARAMETERIZATION OF THE SAMPLING
AND RESULTS

We deployed our new light tree algorithm to production last year,

and have observed decreases in noise and render times on our pro-

duction scenes. The new algorithm is also implemented on GPU

alongside the CPU, where we benefit from our 𝑠 parameter’s effect

of tracing the same number of shadow rays for each sample. This

helps to reduce our thread divergence and increase our render-

ing throughput. In this section, we evaluate our method on three

test scenes, comparing against our previous implementation and

analyzing optimal𝑚- and 𝛾-parameter values.

Figure 4: Cityscape test scene rendered at 65,000 spp

Cityscape. Our cityscape scene is a procedurally-built skylinemeant

to test the scaling capabilities of our light tree. Using only simple

shaders and shapes, the scene helps isolate the costs of light sam-

pling. We compare against our previous method with a tree of

10,000,000 lights. We observe a small increase in variance per sam-

ple, but our rendering times are improved sufficiently so that the

new method is more efficient, as seen in Fig 5.

Figure 5: Error comparison of our method against our pre-
vious work on the cityscape scene featuring over 10,000,000
lights. The previous method has slightly lower variance per
sample due to more sophisticated light evaluations, but our
method is more efficient.

Chronopolis. We also tested on the production Chronopolis envi-

ronment, which features 52,000 spot lights, 27,000 area lights, a

skydome and a directional light. The towers in the environment are

assembled from over 700,000 instances and shaded with production

OSL networks. With high overhead from shading and ray-tracing,

our new implementation is only marginally faster than our previous
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Figure 6: Chronopolis tower scene featuring over 80,000
lights. The first two insets show an improvement in vari-
ance of our method against Adaptive Tree Splitting. Third
inset shows how varying reservoir count𝑚 improves vari-
ance.

technique. Instead we gain efficiency through lower variance, as

seen in Fig 6.

We also observe the benefit of increasing reservoir size 𝑚 on

the Chronopolis environment, gaining significant improvements in

variance in glossy metallic areas where the BSDF plays a critical

role in the contribution of a given light. Due to the complexity of

the scene’s shaders and geometry, we are able to increase 𝑚 for

very little cost in overall render times.

Participating Media. We have observed in production scenes fea-

turing participating media that our new technique is significantly

more efficient than our previous method. We use a production en-

vironment to experiment with two measures of split probability

functions. With the boundary heuristic, we split inversely propor-

tional to
max( |𝐶𝑐−𝑝 |−𝐶𝑟 ,0)

𝐶𝑟
, as specified in Section 8. The simpler

center heuristic splits inversely proportional to
|𝑝−𝐶𝑟 |
𝐶𝑟

. Fig 7b com-

pares the two heuristics, and Fig 7a analyzes the convergence of a

sweep across different𝛾 values and the two approaches, finding that

splitting aggressively is the most efficient strategy in participating

media.
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(a) Convergence plot of varying 𝛾 parameters.
Solid red lines indicate that 𝑡 in 𝑃𝑠 uses the
distance to the cluster boundary in its numer-
ator, while dotted blue lines use the distance
to the cluster center. More aggressive splitting
in the former leads to slower frames, butmore
efficient convergence.

(b) Approximately equal time comparison of two splitting heuris-
tics with 𝛾 = 0.9. On the left we split in inverse proportion to
the distance to the cluster center, and on the right the cluster’s
boundary. Under the center heuristic we see more regions with
high variance.

Figure 7: Participating media results and convergence
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