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Analytic Approximations for Real-Time
Area Light Shading

Pascal Lecocq*, Arthur Dufay, Gaël Sourimant, Jean-Eudes Marvie

Abstract—We introduce analytic approximations for accurate real-time rendering of surfaces lit by non-occluded area light sources.
Our solution leverages the Irradiance Tensors developed by Arvo for the shading of Phong surfaces lit by a polygonal light source.
Using a reformulation of the 1D boundary edge integral, we develop a general framework for approximating and evaluating the integral
in constant time using simple peak shape functions. To overcome the Phong restriction, we propose a low cost edge splitting strategy
that accounts for the spherical warp introduced by the half vector parametrization. Thanks to this novel extension, we accurately
approximate common microfacet BRDFs, providing a practical method producing specular stretches that closely match the ground truth
in real-time. Finally, using the same approximation framework, we introduce support for spherical and disc area light sources, based on
an original polygon spinning method supporting non-uniform scaling operations and horizon clipping. Implemented on a GPU, our
method achieves real-time performances without any assumption on area light shape nor surface roughness.

Index Terms—area light, shading, analytic, microfacet, axial moment, real-time
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1 INTRODUCTION

A CCURATE real-time rendering of specular surfaces is a
challenging task when considering area light source

illumination. The difficulty resides in the evaluation of
a two dimensional specular radiance integral for which
no practical solution exists, except expensive Monte Carlo
based sampling techniques. Most compelling solutions are
found using Most Representative Point (MRP) approaches [1]
[2], reducing the shading integration problem to a cheap
point lighting calculation. However, these methods fail
in preserving the specular highlight shape of underlying
BRDFs and partial visibility above horizon is complicated to
handle. Arvo [3] provides an exact analytic solution for the
shading of glossy surfaces lit by a non-occluded polygonal
light source. But its implementation relies on an expen-
sive contour integration method, and is restricted to Phong
surfaces. A recent and concurrent approach tackles this
problem using Linearly Transformed Cosine distributions (LTC)
[4]. However, the solution requires per-brdf precomputed
tables built upon an expensive minimization technique.

Finding a solution combining accuracy, flexibility and
real-time performances is a challenging problem with many
expectations on high quality demanding applications such
as lighting pre-viz tools, game engines or production ren-
derers.

In this paper we address these shortcomings by leverag-
ing the Irradiance Tensors developed by Arvo with accurate
analytic approximations (Figure 1). We further extend the
method to handle multiple axis-oriented Cosine lobes and
overcome the Phong restriction, enabling support for mi-
crofacet BRDFs. Finally, we introduce an original polygon
spinning method allowing surfaces shaded by spherical and
disc area lights using the same mathematical framework.

Our contributions are:

• Authors are with the Research & Innovation Department of Technicolor,
975 av des Champs-Blancs, 35576 Cesson-Sevigne, France.
E-mail: * pascal.lecocq@technicolor.com

• A general framework for approximating and evalu-
ating the edge contour integrals in O(1) time instead
of O(n) using simple and integrable peak shape
functions.

• An analytical approximation for the multiple prod-
uct of axis-oriented Cosine lobes that enables the
integration of more complex BRDFs over spherical
polygons.

• A low-cost edge splitting strategy for handling the
warp distortion introduced by the half vector param-
eterization that enables microfacet BRDF support.

• An original spinning algorithm enabling spherical
and disc area lighting and leveraging our approxi-
mations, that supports non-uniform scale operations.

2 RELATED WORK

Direct illumination from area light sources has been ad-
dressed in various ways in the last decades. We review in
this section the related works we think most relevant to our
approach, with a focus on the techniques addressing the
integration of the specular term with real-time rendering
constraints.

Monte Carlo integration. Monte-Carlo integration tech-
niques are a common approach to numerically compute
complex integrals based on probabilistic sampling strate-
gies. For direct area light illumination problems, samples
are drawn either considering the solid angle sustained by
the area shape [5], [6], considering importance sampling of
the surface BRDF, or using a combination of both to reduce
the variance in presence of specular surfaces. Despite this
sampling effort, these methods require a huge amount of
samples to converge to a noise free result, hardly compatible
with real-time rendering constraints.
Another common approach is to approximate area light
sources using a set of Virtual Point Lights (VPLs) [7], reducing
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Fig. 1. Our analytic approximations provide real-time performances to specular area lighting at a quality close to the ground truth (a, timing measured
on a GPU NVIDIA GTX 980Ti). We support polygonal light source shapes of any kind (even animated ones) (b), and surfaces described by Phong
or microfacet BRDF models (c). Our method easily extends to spherical and disc area lights with non uniform scaling (d, here with a microfacet
distribution).

the specular term integration to a many point lights calcula-
tion. Clustering methods [8] have been proposed to further
reduce the algorithm complexity of VPLs with successful
application in real-time rendering [9], [10]. However, these
solutions are usually restricted to low frequency illumina-
tion problems such as diffuse or weakly glossy surfaces
to limit the sampling count and maintain good real-time
performances. Rendering high frequency illumination with
these methods is still a challenging problem only addressed
using huge number of samples or expensive integration
techniques far from real-time rendering considerations.

Most Representative Point. MRP approaches alleviate
the costly sampling techniques by identifying a represen-
tative point on the area light that most contributes to the
illumination. The method reduces the shading integration
problem to a single point lighting calculation providing a
practical solution for real-time rendering. Early works on
the method can be found in [11] for Phong area lighting. The
MRP here is defined as the closest point from the viewing re-
flection direction. Instead, Drobot [1] considers a point in the
area of intersection between an area light and a cone with
aperture parameterized by the surface roughness. Karis [2]
addresses the problem of energy conservation and uses a
modification of the specular distribution to better match
intensity highlight of specular microfacet models. However,
these approaches have several drawbacks. The highlight
shape with a Phong BRDF is decently approximated, but
becomes inaccurate when considering microfacet BRDFs.
Horizon handling is yet another issue. The MRP approx-
imation works well with simple geometric light emitters
but calculation get more complex when the light source is
clipped above the horizon plane.

Analytic approaches. Other approaches try to derive an
exact analytic solution of the shading integral, or at least a
decent approximation. Bao and Peng [12] approximate the
double integral with 2D polynomials using a low degree
Taylor series expansion, limiting their method to low ex-
ponent Phong surfaces. Tanaka and Takahashi [13] extend
the linear area light method of Poulin [14] and decompose
the solid angle into 1D signed integrals along edge great
circle. Each 1D integral is then evaluated using a Chebyshev
polynomial approximation, restricting the method to low
frequency Phong surfaces. The Irradiance Tensors developed

by Arvo [3] provide an exact analytic solution for the direct
illumination of glossy surfaces lit by a polygonal light
source. Using tensor theory and Stokes contour integration,
the shading integral is decomposed into a sum of signed 1D
integrals along the spherical boundary edges of the polygo-
nal light. Each edge integral is then evaluated analytically
using a linear time algorithm bound to the Phong shini-
ness n. A practical implementation for real-time graphics,
including horizon clipping, can be found in [15]. Despite
its accuracy, the method only works for Phong surfaces and
its usage in real-time rendering applications is limited to
weakly glossy surfaces due its O(n) time complexity.

Spherical Gaussians (SGs). SGs are spherical functions
used in many lighting problems such as environment lighting
or global illumination with subsequent derivations for real-
time area light illumination. Wang et al. [16] approximate a
spherical area light with an SG providing a closed-form ex-
pression for the integral product with an SG-approximated
BRDF. To handle microfacet BRDFs, the spherical warp
introduced by the half vector transform is approximated
using a single isotropic SG. However this method fails
to represent the elongated specular stretches at grazing
angles. Xu et al. [17] approximate the spherical warping
using Anisotropic Spherical Gaussians (ASGs). A practical
implementation for spherical light source illumination can
be found in [18]. These methods have two main limita-
tions. First, the spherical warp approximation supposes an
isotropic light source emitter. Second, highly glossy surfaces
tend to reveal a Gaussian shape due to the area light
approximation as an SG. Close to our approach, Wang et
al. [19] use a piece-wise linear approximation of the SG
for polygonal visibility evaluation, reducing the 1D edge
integrals to analytic expressions. Conversely, Xu et al. [20]
use an edge parameterization on the parallel plane to derive
1D edge integral expressions evaluated using a piece-wise
linear approximation. Both method require a piece-wise
decomposition of the integration domain. Furthermore, they
are restricted to isotropic SGs only and fail to represent the
anisotropy of microfacet distributions.

Linear Transformed Cosine. A recent and concurrent
approach proposed by Heitz et al. [4] uses linear transforms
of a clamped Cosine distribution (referred hereafter as LTC)
to approximate isotropic BRDFs including microfacets. As a
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result, by applying the inverse transform on the polygon,
the shading operation is reduced to an analytical form
factor calculation. LTC is accurate and simpler to evaluate
than ours. However, matching a BRDF requires the pre-
computation and storage of the transformation matrices for
the set of incident directions and roughness values. The
need for storage and memory access is not always desirable
especially on low-end GPUs. Our solution is fully analytic
and does not require any pre-computation step or storage.
Furthermore, our method enables integration in the half-
vector space, providing higher degree of liberty. In that
sense, both methods are complementary.

3 OUR APPROACH

Our method builds upon Irradiance Tensors and the contour
integration method developed by Arvo [3], that we briefly
recall in Section 4. This approach represents several chal-
lenges.

The first challenge is to get around the O(n) time bot-
tleneck for real-time rendering efficiency. We tackle this
problem by rewriting the 1D integrals in a more concise
way (section 5) allowing to settle for an accurate O(1)
time approximation using a rational peak shape integration
framework (section 6). Unlike Chebyshev or Fourier approx-
imations, our approach is bound to only 1 or 2 rational
functions and doesn’t suffer from any ringing artifacts.

Second, the integration of more complex distributions
over a spherical polygon combining several axis-oriented
Cosine lobes is yet another challenge. By borrowing opera-
tors from Spherical Gaussians, we derive simple analytic ex-
pressions (section 7) approximating accurately the multiple
product of Cosine lobes.

Finally, the last challenge is to overcome the Phong BRDF
restriction and give support for more plausible BRDFs.
The half-vector parameterization found in microfacet theory
introduces a spherical distortion which can be difficult to
predict using non isotropic polygonal light sources. Based
on observations from great circle distortions, we can faith-
fully approximate this spherical warp using a polygonal
approach (section 8) in a more flexible way than previous
methods.

4 IRRADIANCE TENSORS AND THE EDGE INTE-
GRAL

The Irradiance Tensors developed by Arvo [21] provide a
useful framework for the analytic integration of polyno-
mials over the sphere S2. These polynomials correspond
to nthorder monomial expressions described by an axis-
oriented cosine lobe distribution. The integration of this
expression over a spherical region ΩA ⊂ S2 yields to the
definition of nthorder axial moment about an r axis:

Mn(ΩA, r) =

∫
ΩA

(u · r)ndu (1)

Using tensors product and Stokes theorem, Arvo developed
the axial moment expression as a 1D contour integration
over the projected area light boundary ΩA. Considering
a polygonal light source, a closed-form expression for the
1D integrals can be obtained following a parameterization

Fig. 2. The integral of a cosine lobe distribution axis, oriented toward r,
over a spherical region ΩA is reduced to a 1D contour integration over
the boundary of ΩA. A closed-form expression is given for polygonal
light source using a parameterization of the ith spherical edge in the local
base vi, ti (the red dotted line depicts here the great circle supporting
the edge (vi, vi+1)).

of spherical edges along great circles (see Figure 2). Let
consider a polygon with m boundary edges. Following the
notations depicted in Figure 2, the closed-form expression is
given as follows:

(n+ 1)Mn(ΩA, r) = znΩA −
m∑
i=0

(ni · r)F (Φi, ci, δi, n− 1)

(2)
with

ci =
√
a2
i + b2i ; δi = tan−1(bi/ai)

ai = vi · r; bi = ti · r

and

F (Φ, c, δ, n) =

n−1+zn
2∑

k=0

c2k+1−zn

Φi−δ∫
−δ

(cosφ)2k+1−zn dφ (3)

with zn = 1− (n mod 2).

For a complete description of Irradiance Tensors and how
to come to this expression, the reader shall refer to [21]
and [3]. Note also that we use a slightly different notation
compared to Arvo to ease the mathematical derivations
further developed in the next sections.

The sum of 1D integrals in F is evaluated in closed-
form using a recurrence algorithm of complexity O(n) time
per edge, n being the Phong exponent. Implemented on a
GPU, the method works well for weakly glossy surfaces
(n < 40) but the performance drops as the Phong exponent
increases, and becomes impractical for highly glossy surface
(n > 1000). To reduce the evaluation cost for high Phong
exponents, Arvo suggested early termination of the iteration
loop once a desired relative accuracy is reached. But, from
our experience, we observe severe performance drop-off,
especially at grazing view angles of the surface because of
a high number of iterations necessary to reach the desired
accuracy. The difficulty to predict the performance makes it
a nonviable solution for real-time rendering considerations.
In a practical GPU implementation, the edge integral F
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should be ideally evaluated in O(1) whatever the Phong
exponent.

TABLE 1
Notations used throughout this paper.

Symbol Description
L(x,v) radiance scattered from point x toward direction v
ΩA region ‖ solid angle sustained by area light source A
n surface normal
v normalized view vector
r normalized reflected view vector
h normalized halfway vector given by (i + v)/|i + v|
m number of boundary edges on the polygonal light
vi spherical projection of the ith vertex of the polygonal

light
n cosine lobe exponent
ni edge outer normal given by (vi × vi+1)/|vi × vi+1|
ti edge tangent vector given by ti = vi × ni

Φi edge arc length
F spherical edge integral
F̃ approximated spherical edge line integral

5 REFORMULATION OF THE EDGE INTEGRAL

We propose to replace the costly edge integral evaluation
of equation 3 by a cheap and accurate analytic approxima-
tion that allows constant time evaluation with any Phong
shininess n. Setting an accurate approximation requires the
knowledge or at least the intrinsic characteristics of the
integrand function. A common approach is to probe the
edge integrand to extract these characteristics. However, in
its present form, this requires the evaluation of the sum
of the integrand terms. We propose to rewrite the edge
integral in a different form in order to get a simpler and
more compact expression. To that end, we first introduce a
term f and a temporary term q defined as follow:

f(φ, c, n) =

{
c cosφ
1

q =

{
(n− 1)/2 if n is odd
n/2 if n is even

By switching the sum and integral operators and by using
the terms introduced above, the edge integral F defined in
equation 3 can be re-written as follow:

F (Φ, c, δ, n) =

∫ Φ−δ

−δ
f(φ, c, n)

q∑
k=0

(c cosφ)
2k

dφ (4)

The sum exhibits a geometric series of the form x2k with a
generic formula:

q∑
k=0

x2k = (x2(q+1) − 1)/(x2 − 1)

This allows us to cancel out the sum and get a single func-
tion to integrate after substituting the temporary variable
q.

F (Φ, c, δ, n) =

∫ Φ−δ

−δ

(c cosφ)
n+2 − f(φ, c, n)

(c cosφ)2 − 1
dφ (5)

This reformulation allows the evaluation of the integrand
term in constant time. Another advantage is that it enables
smooth representation of non n integer values, especially
for low n exponents. Though no indefinite integral exists,
an accurate analytic approximation can be obtained from
our reformulation.

6 ACCURATE ANALYTIC APPROXIMATIONS

Let us consider the integrand term from the edge integral in
equation 5:

I(Φ, c, n) =
(c cosφ)

n+2 − f(φ, c, n)

(c cosφ)2 − 1
(6)

According to Figure 3, we observe that the shape of I
corresponds to symmetric peak shape functions of various
height and width depending on parameters c, n having a
minimum reached at φ = ±π/2 and a maximum at φ = 0.

The core idea of our method is to approximate I using
peak shape functions described by simple rational expres-
sions with known analytic integration. The approximation
relies on a simple fitting procedure that maps a peak
shape function to the integrand I characteristics such as the
minimum, maximum and width.

Following equation 6, a closed formulation is given for
the minimum and maximum values:

Imin(c, n) =

{
0
1

Imax(c, n) =

{
cn+2−c
c2−1 n odd
cn+2−1
c2−1 n even

Half width estimation. The width is defined as the Half
Width at Half Maximum (HWHM) which corresponds to the
abscissa xw such as

I(xw, c, n) = (Imax − Imin)/2− Imin

However, finding a closed-form expression for xw is some-
what more difficult. One approach could consist in storing
pre-computed values for xw in a 2D table for discrete entries
(c, n). Another approach is to settle an analytic approxi-
mation. Following experimental measurement studies, we
found that xw can be empirically approximated as follow:

xw(c, n) ≈


π
3

√
1−

(
c− c

n

)2
n odd

π
4

(
1−

(
c− c

n−1

)2.5
)0.45

n even
(7)

Even if this is a rough estimation (Figure 4), the fitting
procedure, described in next section, will guarantee that our
approximation will pass through the point (xw, I(xw, c, n)).

6.1 General integration framework

We derive a general framework for approximating and
evaluating equation 3 by means of generic peak shape
functions. To that end, we first consider a generic peak
function P , defined by a minimum Pmin, a maximum Pmax
and width Pw. An accurate approximation of I can be
obtained by adjusting P to the same characteristics of I . The
fitting procedure consists in a scaling, offsetting and width
adjustment defined as follow:

Ĩ(φ, c, n) =
Imax − Imin

Pmax − Pmin
(P (φ, xw)− Pmin) + Imin

Note that function parameters have been omitted for brevity.
We can further reduce this expression by packing all the
constant terms together:

Ĩ(φ, c, n) = s P (φ, xw) + t (8)

with s = (Imax − Imin)/(Pmax − Pmin) and t = Imin − s Pmin.
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Fig. 3. The edge integrand I reveals peak shape functions of various
height and width. The core idea is to approximate I using a simple and
integrable peak shape function with same characteristics.

Fig. 4. Approximation of the half width xw of integrand I for various
values of n odd (left) and n even (right).

A general solution for the evaluation of equation 3 is
then given by:

F̃ (Φ, c, δ, n) = s

∫ Φ−δ

−δ
P (φ, xw) dφ+ tΦ (9)

6.2 Peak-shape functions approximation

We studied several peak shape function families P with
indefinite integrals simple enough to avoid time-consuming
evaluation and providing an accurate estimate of equa-
tion 6. We validated the accuracy of our approximations
with ground truth comparison by implementing an energy-
conserving single-axis Phong model using a single-axial
moment evaluation expressed as follow:

L(x,v) =

∫
ΩA

fPhong(i,v)(n · i)di = ρs
n+ 1

2π
Mn(ΩA, r)

(10)
Horizon clipping. Horizon clipping takes into account the
energy loss when the area light is partially below the hori-
zon. While the clipping procedure was not explicitly ad-
dressed by [3], a practicable implementation can be found in
[15]. We adopt the same procedure in our implementations.

Fig. 5. Approximation of the edge integrand I using peak shape func-
tions for various values of c and n. The Lorentzian function approximates
edge integrands fairly well but lacks accuracy in the tail of I. The
Lorentzian-Pearson better approximates I, but it remains inaccurate
for large width values. The ellipsoid approximation provides the best
accuracy whatever the width of the function.

6.2.1 Lorentzian approximation

The simplest approximation can be found by means of a
Lorentzian peak shape function:

P (φ, c, n) =
1

1 + aφ2
with

∫
P =

1√
a

tan−1
(√
aφ
)
(11)

We use equation 7 to compute the fitting point I(xw, c, n)
that roughly corresponds to the half maximum of I . Solving
the equation I(xw, c, n) = Ĩ(xw, c, n) yields to resolution of
unknown parameter a.

a =
1− yw − 4xw

2

π2

yw xw2
with yw =

I(xw)− Imin

Imax − Imin

By replacing the integral term in equation 9 by the one
defined in equation 11, we obtain an analytic approximation
for F evaluated in constant-time:

F̃ =
s√
a

(
tan−1

(√
a(Φ− δ)

)
− tan−1

(
−δ
√
a
))

+ t Φ

Noting that tan−1 x− tan−1 y = tan−1
(
x−y
1+xy

)
mod π, this

expression can be further reduced into a single arctangent
evaluation to save GPU instructions.

F̃ =
s√
a

tan−1

( √
aΦ

1 + a(−δ)(Φ− δ)

)
mod π + t Φ (12)

Error analysis. The Figure 6 shows that the Lorentzian
approximation is fairly accurate and close to the ground
truth whatever the roughness of the surface. However, we
can observe slight light leaks around the highlight shape
most noticeable when increasing the overall intensity. A
careful observation of the Lorentzian approximation plots in
Figure 5 shows that the error results from an overestimation
of the function I around the tail.
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6.2.2 Lorentzian - Pearson VII approximation

A better approximation around the tail can be found by
combining the Lorentzian function with a second peak func-
tion with a shorter tail. The idea is to encompass the
integrand function in the tail area with these two approx-
imations and find a blending factor from values picked in
the tail. The second peak function is defined by a Pearson VII
function corresponding to a Lorentzian function raised to a
power m. We chose m = 2 which has an indefinite integral
simple enough to avoid time-consuming computations:

P =

(
1

1 + bφ2

)2

and
∫
P =

φ

2(b+ φ2)
+

tan−1
(
φ√
b

)
2
√
b

The Pearson VII function behaves exactly like a Lorentzian
function on its superior part and has a shorter tail in
its bottom part. However, finding the b parameter, such
as Ĩ(xw) = I(xw) requires the resolution a polynomial
equation of degree 4 involving complex computations. For-
tunately, it turns out that the computation of b can be greatly
simplified and save GPU computation time by reusing the a
parameter computed for the Lorentzian approximation. From
our experiments, we found that b ≈ a/2 always enclosed the
target integrand function I .

Linear blending Adjusting IP to the same width than
I gives us another approximation that underestimates I
in the tail while preserving the fitting above it. The best
approximation then sits between the two functions and can
be found using a simple linear blending operation.

ĨLP (φ) = αĨL(φ) + (1− α)ĨP (φ) (13)

where

α =
ĨP (xtail)− I(xtail)

ĨP (xtail)− ĨL(xtail)

The linear blend operation requires the evaluation of the in-
tegrand function I at a position xtail located in the tail of the
function. However, finding a closed-form expression for xtail
represents the same difficulty as for the half width estimation.
Again, we use instead an empirical approximation:

xtail ≈ xw + 0.3946 xw(0)
(

1− (1− xw/xw(0))
12
)

(14)

Approximation accuracy. The Lorentzian-Pearson approxi-
mation greatly improves the overall accuracy of the spec-
ular highlight and suppresses most observable artifacts.
Although, we still experience subtle light-leaks on areas
located outside the specular highlights as shown in Figure 6.
These leaks are occurring when the peak shape I is very
large, i.e. when the value c is small. A closer look at the plot
in Figure 5 shows that the approximation is overestimated
at integration domain bounds. Especially, at φ = ±π/2, the
first derivative is null while the Lorentzian-Pearson approxi-
mation is not.

6.2.3 Ellipsoid approximation

A better accuracy, especially at domain bounds, can be
obtained using ellipsoid-based peak shape functions. These

functions have the interesting property to behave like a
Lorentzian but having a null first derivative at φ = ±π/2.

Ellipsoid: PE =
a

1 + (a− 1) cos2(φ)
(15)

Indefinite integral:
∫
PE =

√
a tan−1

(
tanφ√
a

)
(16)

Square Ellipsoid function:

PE2 =

(
b

1 + (b− 1) cos2(φ)

)2

;∫
PE2 =

√
b

2
(b+ 1) tan−1

(
tanφ√

b

)
− b

2c
(b− 1) sin(2φ)

(17)

We follow exactly the same procedure described in Sections
6.2.1 and 6.2.2 to fit IE and IE2 to I and find the best
approximation using a linear blending. The parameter a for
the first approximation IE corresponds to:

a =
yw(1− cos(φ)2)

cos(φ)2(1− yw)
(18)

For IE2 , parameter b roughly follows

b ≈ a
(

2.1 + 1.28
xw
xw(0)

)
.

Approximation accuracy. The ellipsoid approximation
provides the best accuracy whatever the width of the func-
tion with unnoticeable artifacts as illustrated in Figure 6.

6.3 Performance vs accuracy analysis
We implemented and tested our approximations on a GPU
NVIDIA GTX 580. The table 2 provides the rendering times
in milliseconds per edge along with rendering accuracy
measurements using a normalized RMSE. Measurements
were done considering the processing of all screen pixels,
representing the most critical case, at a 720p resolution. Note
that the timings also include the double horizon clipping
around n and around r.

As expected, the rendering time obtained with Arvo’s so-
lution increases with the exponent n, while remaining con-
stant with our approximations. The Lorentzian approxima-
tion achieves the best performance while the ellipsoid is the
most accurate with unnoticeable difference with the ground
truth and a small computational overhead introduced by
a GPU time-consuming tangent evaluation. The Lorentzian
approximation can be sufficient most of the time for high
performance demanding application such as games. For
high quality demanding applications such as lighting pre-
viz for production rendering, the Lorentzian-Pearson or the
ellipsoid approximation are the best choices.

7 MULTIPLE-AXES MOMENTS EVALUATION

The Irradiance tensors allow evaluation of multiple axes
using decomposition of tensor product. Arvo [3] proposed
a closed form expression for the double-axis moment de-
scribed by the product of two cosine lobes of order n and 1.
However, the generalization for arbitrary orders combining
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Lorentzian

Lorentzian-Pearson VII

Ellipsoid

Arvo (ground truth)

Source image Specular contribution ×10

Fig. 6. Comparison of our approximations against ground truth refer-
ences images. The right column depicts a scaled version of the images
on left one, so as to make differences visible. While light leaks are clearly
visible for the Lorentzian and slightly visible for the Lorentzian-Pearson,
they are hardly noticeable on the scaled version for the ellipsoid approx-
imation.
several axes is quite difficult, involving complex mathemat-
ical expressions and requiring per-axis moment evaluation.

To reduce the mathematical complexity of the problem,
we demonstrate that the product of Cosine lobes can be
accurately approximated by a single Cosine lobe, providing
a practicable and efficient way for multiple-axes moment
evaluation.∫

ΩA

(u · r1)n1(u · r2)n2 ...(u · ri)ni ≈
∫

ΩA

µ(u · r)n (19)

Such mathematical reduction has been first addressed by
Meunier et al. [22]. Their approach uses a time-consuming
L2 minimization technique to determine the parameters
(µ, r, n) approximating the product of two Cosine lobes. The
results are pre-computed and stored in a table for a large
collection of (n1, n2, 6 (r1, r2)) samples. Dealing with tables
is not always desirable in terms of memory occupation
and cache efficiency, especially on low-end GPU mobile
devices. To avoid this problem, we propose a simple analytic
approach which is fast and that does not require any pre-
computations step or memory storage.

7.1 Product of Cosine lobes approximation

Our approach is built from the simple observation that
Cosine lobes and Spherical Gaussians share many similarities
in terms of shape and convolution operators. SGs are a
useful mathematical tool for approximating many lighting
problems. As a brief recall, an SG is a spherical function with
the following form

G(u, r, λ, µ) = µeλ(u·r−1)

An interesting property of SGs is that the product of two SGs
is an another SG, computed exactly using simple analytic
formulas. For a consistent notation with SG, let us introduce

the spherical function C to represent a Cosine lobe with a
magnitude µ.

C(u, r, n, µ) = µ(u · r)n (20)

It turns out that a Cosine lobe can be fairly well approximated
by an SG in most situations.

C(u, r, n, µ) ≈ G(u, r, λ, µ) (21)

We have also observed that the product of two Cosine lobes
closely behaves like the product of two SGs due to the shape
similarities. Our idea is to borrow product operators from
SGs to derive a single Cosine lobe approximation from the
product of two Cosine lobes. Our method consists in mapping
an SG on each Cosine lobe and evaluate the parameters of
the product in the SG domain. Then, we back-transform the
results in the Cosine lobe domain by mapping a Cosine lobe
on the resulting SG.

The mapping of a Cosine lobe from/to an SG is achieved
by solving the equations such as C and G have the same
width at half maximum. These parameters are computed
exactly as follows:

λ =
− ln 2
n
√

2− 1
; n =

− ln 2

ln − ln 2+λ
λ

(22)

The product of two Cosine lobes C1 and C2 is then approxi-
mated as follows:

C1(r1, n1, µ1)C2(r2, n2, µ2) ≈ G1(r1, λ1, µ1)G2(r2, λ2, µ2)

≈ G(rp, λp, µp)

≈ C(rp, np, µp)

where

rp =
pm

‖pm‖
; pm =

λ1r1 + λ2r2
λ1 + λ2

λp = (λ1 + λ2)‖pm‖
µp = C1(rp, r1, n1, µ1)C2(rpr2, n2, µ2)

Note that we do not evaluate explicitly the SGs but only bor-
row their product operators for deriving our approximation.
The only difference lies in the computation of magnitude µp
computed exactly as the product of the two Cosine lobes
at rp. Note that the same reasoning could be employed
to approximate the product of anisotropic Cosine lobes by
borrowing operators derived in [17]. We left this derivation
for future works.

7.2 Results and error analysis
We compared our lobe product approximation C against
an exact product of C1 and C2 for various exponents and
angles in polar coordinates (see Figure 7). In most situa-
tions, our single Cosine lobe approximation closely matches
the product of two Cosine lobes. However, when the angle
between the two lobes is very large, we observe a misalign-
ment between the theoretical product and our approxima-
tion. Although, in this situation, the error is balanced by the
very low magnitude of the product, close to 0 except when
the two lobes have a low exponent.

Double-axis Phong implementation. We further vali-
dated our approach by implementing the energy-conserving
double-axis Phong model. According to the formulas given
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Fig. 7. Polar plots of the product (in black) of two Cosine lobes (in red and blue) against our analytic approximation (in green) following the formulas
given in 7.1 for various eccentricity and angle configurations. Our single lobe approximation closely matches the product of two lobes in most
situations. The critical scenario arises when the two lobes are far apart. In this case, we observe a misalignment of the two lobes but the error
remains un-noticeable due to the low magnitude of the product as illustrated in the rendered pictures.

in Section 7.1, the model can be approximated by a single
axial moment as follow:

L(x,v) = ρs
n+ 2

2π

∫
ΩA

(i, r)n(n · i)di

= ρs
n+ 2

2π

∫
ΩA

C1(i, r, n, 1)C2(i,n, 1, 1)di

≈ ρs
np + 1

2π

∫
ΩA

C(i, rp, np, µp)di

≈ ρsµp
np + 1

2π
Mnp(ΩA, rp)

This approximation is energy-conserving thanks to the new
normalization factor resulting from the Cosine product pa-
rameterization and the axial moment normalization.

Images in Figure 8 show a rendering comparison of the
double-axis Phong approximation against a ground truth
solution. The visual difference is unnoticeable whatever the
surface Phong exponent or the angular configuration. As
predicted, the error occurring when the angle of the two
lobes is large is visually dismissed by the low magnitude of
the product.

8 EXTENSION TO MICROFACET BRDFS

The limitation to the Phong specular BRDF is a hard con-
straint for Irradiance Tensors. Most production renderers and
modern real-time rendering engines make use of physically
based BRDFs built upon the microfacet theory. Rough sur-
faces rendered with a microfacet BRDF exhibit longer spec-
ular stretches, more representative of the real phenomenon.
The core of the theory relies on the definition of the half

vector h linking the micro geometry variation with the in-
coming radiance and the viewing direction. Another key as-
pect is the definition of the normal distribution function D(h),
responsible for the shape and the brightness of specular
highlights. In this section, we demonstrate that microfacet
BRDFs can be well approximated using Irradiance Tensors
theory. Combined with our approximations, we propose a
method that can accurately represent the highlight shape,
especially the elongated specular stretches viewed at graz-
ing angle, as predicted by the microfacet theory, and at a
quality close to the ground truth.

To that end, we consider the axial moment expressed in the
half vector space. Following equation 1, and after proper
normalization, this corresponds to the integration of the well
known Blinn-Phong distribution DBlinn

n+ 2

2π
Mn(Ω′A,n) =

∫
Ω′A

n+ 2

2π
(h·n)ndh =

∫
Ω′A

DBlinn(h)dh

(23)
Given that dh = di/(4(h · v)), this is equivalent to integrat-
ing: ∫

ΩA

DBlinn(h)

4(h · v)
di (24)

Integrating the axial moment in the half vector space re-
quires the prior knowledge of the transformed spherical
region Ω′A. A naive approach can consist in performing
the half vector transform on boundary edge vertices, and
evaluate the 1D integral on the newly transformed edges.
But as illustrated in Figure 9, specular highlights get dis-
torted by the warping distortion introduced by the half
vector parameterization. Another possibility is to sample
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Fig. 8. Comparison of a two-axis Phong approximation (top) against a ray-traced ground truth solution (bottom).

TABLE 2
Rendering times in milliseconds per edge on a GPU NVIDIA GTX 580

and GTX 980Ti with rendering accuracy for the three peak shape
approximations.

Method Exponent Time/edge (ms) RMSE

Arvo (exact)
n = 100 13.6 0.41 n/a
n = 500 49 1.57 n/a
n = 5000 476 9.8 n/a

Lor approx
n = 100 0.25 0.12 0.004354
n = 500 0.25 0.12 0.005506
n = 5000 0.25 0.12 0.004128

Lor-Pear approx
n = 100 0.40 0.125 0.003641
n = 500 0.40 0.125 0.003094
n = 5000 0.40 0.125 0.002551

Ellispoid approx
n = 100 0.47 0.127 0.001500
n = 500 0.47 0.127 0.001652
n = 5000 0.47 0.127 0.001014

each edge, but it would require a time-consuming per edge
evaluation. Previous methods like [16] try to approximate
this distortion using anisotropic kernels but it supposes
perfect isotropic light emitters only suited for spherical area
lights. In our case, the polygonal area lights are not restricted
to a specific shape.

8.1 Approximating the half vector warp distortion
Finding a suitable edge parameterization in half vector
space, where axial moment computations can apply, is not
straightforward. However, a good approximation can be
found. Intuitively, we observe that the distortion reaches
its maximum at grazing angles, corresponding to situations
where the normal ni approaches the surface normal axis n.

Edge splitting strategy. To give the intuition of our
method, let consider the great circle gc sustained by a spher-
ical edge and gc′ it’s half vector transformation. If we look at
the distortion introduced by the half vector transformation

Fig. 9. Left: the area light’s vertices projected in half vector space
introduce distortions. Middle: our edge splitting strategy overcomes the
distortion by best approximating the spherical warp for each shaded
pixel using only one split. Right: the reference image.

in Figure 10, we observe that gc′ is bent toward the normal
axis of gc, with a maximum elevation located at p′, and
aligned with the viewing vector v. A simple explanation
is that the widest angle spawned by gc with the viewing
vector v is found at p. In other words, in the direction of r.
This simple observation is the core idea of our edge splitting
strategy. Choosing a split position at p will always ensure
to get the maximum distortion for an edge in half vector
space. The strength of this approach is that a single split is
required. Moreover, if the position p is located outside the
spherical edge, no split is required and the computational
overhead of our solution is greatly reduced. The full edge
splitting procedure is described in Algorithm 1.

8.2 Approximation of microfacet specular distributions
A broad range of microfacet distribution functions found in
the literature can be fairly well approximated and integrated
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Algorithm 1: Edge splitting procedure

for each shading point and each spherical edge vi, vi+1 do
Orthogonally project r to the edge plane with
normal ni at point p

Normalize p
Do the half transform of vertices
vi, vi+1 → v′i, v

′
i+1

if p ∈ vi, vi+1 then
Split edge at p
Do the half transform p→ p′

Evaluate edge integral for v′i,p and p, v′i+1

else
/* Do not split */
Evaluate edge integral v′i, v

′
i+1

Fig. 10. Illustration of the spherical distortion gc′ of the great circle gc
produced by the half vector transform. The distortion get its maximum
for grazing viewing angles at p′ which correspond to the transformation
of point p, aligned with the viewing reflection r.

by means of axial moment over a spherical region.
Beckmann Approximation. The Beckmann distribution

is a peak shape that roughly corresponds to a Blinn-Phong
distribution for roughness values m < 0.5. A decent in-
tegration approximation, using a single axial moment, can
be obtained by mapping the Beckmann roughness m to the
cosine power exponent n. Noting that n ≈ 2/m2 − 2, we
obtain: ∫

Ω′A

DBeckmann(h) dh ≈ 1

πm2
Mn(Ω′A,n) (25)

GGX approximation. The GGX/Towbridge-Reitz distribution
[23] corresponds to an ellipsoid peak shape function pro-
ducing smoother specular highlights that better match ex-
perimental measurements from real materials. At the differ-
ence to Blinn-Phong, the distribution has a smoother falloff,
converging to c2 at the domain bound when h · n = 0.
To mimic this behavior, we split the distribution into one
constant term c0 = c2 and one lobe term corresponding to
the GGX distribution shifted down to 0. The integration
of the constant term reverts to the calculation of the solid
angle sustained by the area-light in the half vector domain.
The integration of the second term is approximated by
a weighted sum of two axial moments of order n1 and

TABLE 3
Timing overhead per edge (@720p, full coverage + clipping) for

microfacet distributions compared to Phong

Specular distribution GTX 580 GTX 980Ti
Phong ×1 ×1
Blinn-Phong ×1.26 ×1.36
GGX ×2.25 ×1.92

n2 where n2 has a wider eccentricity compared to n1 to
reproduce the GGX smoothness.∫

Ω′A

DGGX(h) dh ≈ 1

π

(
c0 Ω′A + c1

n1 + 2

2
Mn1(Ω′A,n)

+ c2
n2 + 2

2
Mn2(Ω′A,n)

)
(26)

The resulting integral is normalized so that
∫
D h · n = 1

so the weights c1 and c2 are chosen accordingly such as
c0 + c1 + c2 = 1. Using a least square fitting method, we
found that

n1 = 2
c2 − 2

n2 = n1/10
with weigths

c1 = 0.7 (1− c2)
c2 = 0.3 (1− c2)

provide a decent approximation whatever the eccentricity
parameter c.

Modeling more complex distributions. Integrating
directly in the half-vector space allows for the shading
of microfacet surfaces with anisotropic properties. Such
anisotropic distributions [24] [25] can be obtained by scal-
ing/streching the polygon along desired axes. Modeling
more complex distribution in that space can be achieved
numerically by best-fitting LTC matrices from [4] or analyti-
cally by combining several axes as we did in Section 7.1.

8.3 Results and improvements

We implemented and tested our solution on a GPU NVIDIA
GTX 580 and a GTX 980Ti. The table 3 gives the timing over-
head compared to Phong distribution. In contrast to Phong,
only one horizon clipping is performed around n. As a
result, combined with our low-cost edge splitting approach,
our solution has a limited computational overhead.

We also compared our solution with reference images
obtained with a ray-traced solution. As shown in Figure 11,
the elongated specular stretches predicted by the microfacet
theory are faithfully reproduced with an accuracy close
to the reference in most situation. However, under certain
roughness and geometric configurations we can notice a
lack of brightness, especially when the viewing reflection
is close to an edge border and when the surface is rough
(see Figure 13). This phenomenon tends to disappear as
the roughness goes to 0 (n → ∞). These artifacts result
from an underestimation of the theoretical solid angle in the
half-vector space. As shown in Figure 12, our edge-splitting
strategy fails to capture important distortion of the great
circle sustained by an edge.

Edge-split balancing strategy. To reduce the visual arti-
facts, we propose a simple balancing strategy that captures
the inflection points on the half-transformed great circle. The
idea is to balance the split position between the mid point
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Fig. 11. Surface lit with a Blinn-Phong and GGX microfacet distribution rendered using our analytic approximations compared against a reference
ray-traced solution.

Fig. 12. Solid projection of a rectangular area light on the hemisphere
(in blue) and its corresponding theoretical projection in the half-vector
space (in red). On the left, the edge split approximation (in green) under-
estimates the theoretical projection when the surface is rough and when
r is at grazing angle against the edge plane. Using a simple balancing
heuristic, controlled by r (middle) and by the roughness (right), we
better recover the theoretical solid angle of the half-vector transformed
polygon.

pm of vi, vi+1 and the split position p prior to the half-
transform. The balancing heuristic depends on the surface
roughness m and the angle between v and the edge plane
with normal ti. The balancing strategy is summarized in the
algorithm 2.

Algorithm 2: Edge-split balancing procedure

m =
√

2.0/(n+ 2))
k = 2 | ti · v |
pm = (vi + vi+1)/‖vi + vi+1‖
p = (1− k m) p + k m pm

p = p/‖p‖

As illustrated in Figure 13, the balancing strategy over-
comes most of the visual artifacts. The main advantage
is that no additional split is required. However, in some
extreme cases, the single split approach still shows some
differences at extreme grazing angles, or when the light
source is very large.

9 SPHERICAL AND DISC AREA LIGHTS SUPPORT

The analytic approximations we have developed so far are
restricted to polygonal light emitters. Light emitters based
on analytic shapes such as Sphere and Disc, represent an
interesting class of area-lights that extends the set of lumi-
naries representation. Note that Arvo [21] proposed another
closed form expression to evaluate the axial moment over
a spherical light. However, the solution is based on another
parameterization and recurrence evaluation solved in O(n)
time. Furthermore, the method cannot handle non-uniform
scaling operation.

We propose a simple method to shade specular surfaces
by spherical and disc area lights. Our method leverages the
polygonal approach with our approximations, supporting
the partial visibility of the lights and non-uniform scaling
operations.

9.1 Spinning polygon strategy

Our approach is inspired by optical illusions produced by
high-speed spinning rotations. The idea, depicted in Figure
14 , is to give the illusion of a sphere or a disc by considering
the spinning of a k-sided polygon around a unit disc nor-
mal axis and evaluate the axial moment over the resulting
polygon. The orientation θm of the polygon is computed at
each shading point and should theoretically be chosen such
as

θm = argθ maxMn(P (θ), r)

Disc area light. Determining the best orientation θm is
a nontrivial maximization problem that depends on several
parameters difficult to solve in real-time. However, accord-
ing to experimental measurements, we noticed that when
the roughness goes to 0 (n → ∞), the best orientation
is found toward r′, the intersection of the (p, r) line with
the disc plane. Conversely, when the roughness goes to
1 (n → 1) the best orientation is found towards p′ the
perpendicular projection of p on the disc plane. By setting-
up a linear blending between the two positions driven by
the roughness m we can obtain a decent approximation for
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Fig. 13. Under certain roughness and geometric configurations the edge splitting strategy may exhibits some visual artifacts (split). Thanks to
a simple balancing heuristic (split+bal) those artifacts are greatly reduced (left+middle). However, in some extreme configurations, some visual
differences are still perceptible (right).

the best orientation. Another problem is the area difference
between the polygon and the disc resulting in an under-
estimation of the brightness when the surface is rough.
Windowed by the Cosine lobe eccentricity, the difference is
reduced when the surface is highly specular. To reduce the
difference in all scenarios, we linearly scale the polygon such
as area(P ) = area(D) as the roughness goes to 0.

Fig. 14. Description of our spinning approach. We give illusion of a disc
by considering the spinning of a k-sided polygon P around the disc
normal nd. The orientation of P (here a quad) in the unit disc is chosen
such as argθ maxMn(P (θ), r). The shading at point p is then estimated
by evaluating the axial moment on the resulting polygon P.

Sphere area light. For a sphere light, the procedure
is roughly the same as for the disc. The main difference
lies in the orientation of the disc, facing the shading point
p. Also, a scaling factor s is applied to the unit disc to
take into account of the solid angle sustained by the unit
sphere (see Figure 15). For both luminaries, non uniform
scaling operations are simply supported by transforming p
and r into the area light local space prior the orientation
estimation. The resulting polygon is then back-transformed
into the world space. The full procedure for evaluating the
shading from disc and sphere area lights is described in
Algorithm 3.

9.2 Results and limitations

Our spinning approach (see Figure 1-d) provides convincing
specular highlights for spherical and disc area light sources
with k = 4. The partial visibility is properly handled and
non-uniform scaling operations allows the representation of
ellipses and ellipsoid shaped area lights. In terms of perfor-
mance, we didn’t notice a significant difference compared
to the quad evaluation. However, our approach has some

Fig. 15. The axial moment over a spherical light is estimated by facing
the unit disc toward the shading point p (left). The disc (and hence the
polygon P) is then scaled by s to take into account of the solid angle of
the sphere (right).

Algorithm 3: Disc and Sphere light shading

m =
√

(2/(n+ 2))
s = 1 /* default disc scale */
for each shading point p do

/* handle non uniform-scaling */
Transform p and r in area light local space
if Sphere then

nD = normalize(p)
d = length(p)
s = d/

√
d2 − 1

k =| nD · p | /d /* prevent early clip */

s = s (1−m k +m k
√
π/2) /* +area diff */

r′ = intersection with the disc plane in the r
direction
p′ = orthogonal projection of p to the disc plane
v0 = s normalize((m− 1)r′ +m p′)
v1 = v0 × nD

v2 = −v0

v3 = −v1

Back-transform v0 → v3 in world space
Compute the axial moment on polygon v0 → v3

limitations. First, our method to compensate for the area
difference is just an approximation. As we do not integrate
the circular shape we observe slight brightness differences
especially with moderate glossy surfaces. Second, when the
predicted position to orient the polygon is too close to
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Fig. 16. Disc (top) and sphere (bottom) area lights simulated using our spinning quad technique. Our method produces convincing results compared
to ground truth ray-traced references (here with a Phong distribution), supports non-uniform scale operations and horizon clipping.

the disc center, the excessive rotations of the polygon on
close pixels results in perceptible brightness variations. With
a Phong distribution, this variation is mostly perceptible
when the disc highlight is viewed at grazing angle. With
microfacet distributions, the phenomenon is highly percep-
tible due to the distortion introduced by the half vector
transform. This variation disappears as n goes to infinity.

Fig. 17. Limitations of our polygon spinning strategy. In some particular
cases, the excessive rotation of the polygon in a close area introduces
undesirable brightness variations. With Phong distribution (left), the
phenomenon is perceptible only with discs when viewed from grazing
angle. With microfacet distributions (middle + right), the phenomenon is
perceptible in many configuration.

10 CONCLUSION & FUTURE WORK

We presented efficient and accurate analytic approximations
for the surface shading from polygonal light sources. Our

method is flexible and fast enough for high quality demand-
ing real-time applications. In particular, we showed that
the edge integrals of Arvo can be accurately approximated
and evaluated in constant-time and that the integration
of multiple axis-oriented lobes can be easily approximated
using derivation from SG operators. We also demonstrated
that the Phong restriction can be overcome by approximat-
ing the half vector warp distortions using a single edge-
split strategy. However, in some extreme configurations, the
edge-splitting strategy may exhibits undesirable artifacts.
To overcome these defects, we plan to explore alternative
parameterization of the great circle in the half vector space.
Our goal is to avoid the splitting and better match the dis-
tortions introduced by the spherical warp. For spherical and
disc area light sources, our spinning quads produce convinc-
ing results for Phong distribution at roughly the same cost as
the quad. But in some configurations, the excessive rotation
of the quad introduces undesirable brightness variations we
need to address. We found for instance that finding the
optimal orientation can be reduced to a 1D problem by just
considering the integration along the diagonal of the quad.

Other challenges still remain that would be worth ex-
ploring in the future. First, soft shadows are ignored with
our method. One solution would be to back-project the
scene geometry onto the area light and perform a negative
contour integration along the geometry silhouette. Textured
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area lights is also a hard problem for which no satisfying
solution exists yet. One possibility with our approach is
to modulate the specular term with pre-integrated mip-
mapped textures as done in [1] and [4]. One other approach
would be to look for the varying luminaries derivations
introduced by Arvo [21] and developed by Chen and
Arvo [26]. Finally, some broader lighting problems such as
real-time environment lighting or interactive Global Illumina-
tion would be interesting to address. We believe that our
approximation framework can be particularly well adapted
to these techniques and may overcome some of the issues
encountered with Spherical Gaussians or VPLs approaches.
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