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Figure 1: Our analytic approximations provide real-time performances to specular area lighting at a quality close to the ground truth (a,c).
We support polygonal light source shapes of any kind (even animated ones) (b), and surfaces described by Phong or microfacet BRDF models
(c). Our method easily extends to spherical and disc area lights with non uniform scaling, using spinning quads (illustrated here in red) (d).

Abstract

We introduce analytic approximations for accurate real-time ren-
dering of specular surfaces lit by area light sources. Our solution
leverages the Irradiance Tensors developed by Arvo for the ren-
dering of Phong surfaces lit by a polygonal light source. Using
a reformulation of the 1D boundary edge integral, we develop a
general framework for approximating and evaluating the integral
in constant time using simple peak shape functions. To overcome
the Phong restriction, we propose a low cost edge splitting strategy
that accounts for the spherical warp introduced by the half vector
parametrization. Thanks to this novel extension, we accurately ap-
proximate common microfacet BRDFs, providing the first practi-
cal method producing specular stretches that closely match ground
truth image references in real-time. Finally, using the same approxi-
mation framework, we introduce support for spherical and disc area
light sources, based on an original polygon spinning method sup-
porting non-uniform scaling operations and horizon clipping. Im-
plemented on a GPU, our method achieves real-time performances
without any assumption on area light shape nor surface roughness,
with a quality close to the ground truth.
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1 Introduction

Accurate real-time rendering of specular surfaces is a challenging
task when considering area light source illumination. The difficulty
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resides in the evaluation of a two dimensional specular radiance
integral for which no practical solution exists, except expensive
Monte Carlo based sampling techniques. Most compelling solu-
tions are found using Most Representative Point (MRP) approaches,
reducing the shading integration problem to a cheap point lighting
calculation. However, these methods fail in preserving the specular
highlight shape of underlying BRDFs and partial visibility above
horizon is complicated to handle.

Finding a solution combining both accuracy and real-time perfor-
mances is still a challenging problem, with many expectations on
high quality demanding applications such as lighting pre-viz tools,
game engines or production renderers. However, accurate solutions
exist. The Irradiance Tensors and its applications developed by
Arvo [1995b] provide an exact analytic solution for the shading
of glossy surfaces lit by a polygonal light source. But its imple-
mentation relies on an expensive contour integration method, and
is restricted to Phong surfaces.

In this paper we address these shortcomings by leveraging the Irra-
diance Tensors developed by Arvo with accurate analytic approx-
imations. We further extend the method to overcome the Phong
restriction enabling support for microfacet BRDF with highlight
shape preservation. Finally, we introduce an original polygon spin-
ning method allowing spherical and disc area lighting using the
same mathematical framework.

Our contributions are:

• A general framework for approximating and evaluating the
edge contour integrals in O(1) time instead of O(n) using
simple and integrable peak shape functions.

• A low-cost edge splitting strategy for handling the warp dis-
tortion introduced by the half vector parameterization that
preserves the highlight shape of microfacet BRDF.

• An original spinning algorithm enabling spherical and disc
area lighting that benefits from our approximations and sup-
ports non-uniform scale operations.
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2 Related works

Direct illumination from area light sources has been addressed in
various ways in the last decades. We review in this section the
related works we think most relevant to our approach, with a focus
on the techniques addressing the integration of the specular term
with real-time rendering constraints.

Monte Carlo integration. Monte-Carlo integration techniques
are a common approach to numerically compute complex integrals
based on probabilistic sampling strategies. For direct area light illu-
mination problems, samples are drawn either considering the solid
angle sustained by the area shape [Arvo 1995c; Ureña et al. 2013],
considering importance sampling of the surface BRDF, or using a
combination of both to reduce the variance in presence of specu-
lar surfaces. Despite this sampling effort, these methods require a
huge amount of samples to converge to a noise free result, hardly
compatible with real-time rendering constraints.
Another common approach is to approximate area light sources us-
ing a set of Virtual Point Lights (VPLs) [Keller 1997], reducing the
specular term integration to a many point lights calculation. Clus-
tering methods [Walter et al. 2005] have been proposed to further
reduce the algorithm complexity of VPLs with successful appli-
cation in real-time rendering [Nichols and Wyman 2009; Ritschel
et al. 2008]. However, these solutions are usually restricted to low
frequency illumination problems such as diffuse or weakly glossy
surfaces to limit the sampling count and maintain good real-time
performances. Rendering high frequency illumination with these
methods is still a challenging problem only addressed using huge
number of samples or expensive integration techniques far from
real-time rendering considerations.

Most Representative Point. MRP approaches alleviate the costly
sampling techniques by identifying a representative point on the
area light that most contributes to the illumination. The method
reduces the shading integration problem to a single point lighting
calculation providing a practical solution for real-time rendering.
Early works on the method can be found in [Picott 1992] for Phong
area lighting. The MRP here is defined as the closest point from
the viewing reflection direction. Instead, Drobot [2014] considers
a point in the area of intersection between an area light and a cone
with aperture parameterized by the surface roughness. Karis [2013]
addresses the problem of energy conservation and uses a modifi-
cation of the specular distribution to better match intensity high-
light of specular microfacet models. However, these approaches
have several drawbacks. The highlight shape with a Phong BRDF
is decently approximated, but becomes inaccurate when consid-
ering microfacet BRDFs. Horizon handling is yet another issue.
The MRP approximation works well with simple geometric light
emitters but calculation get more complex when the light source is
clipped above the horizon plane.

Analytic approaches. Other approaches try to derive an exact an-
alytic solution of the shading integral, or at least a descent approx-
imation. Bao and Peng [1993] approximate the double integral by
2D polynomials using a low degree Taylor series expansion but lim-
ited to low exponent Phong surfaces. Tanaka and Takahashi [1997]
extend the linear area light method of Poulin [1991] and decompose
the solid angle into 1D signed integrals along edge great circles.
Each 1D integral is then evaluated using a Chebyshev polynomial
approximation, restricting the method to low frequency Phong sur-
faces. The Irradiance Tensors developed by Arvo [Arvo 1995b]
provide an exact analytic solution for the direct illumination of
glossy surfaces lit by a polygonal light source. Using tensor the-
ory and Stokes contour integration, the shading integral is decom-
posed into a sum of signed 1D integrals along the spherical bound-
ary edges of the polygonal light. Each edge integral is then evalu-
ated analytically using a linear time algorithm bound to the Phong

shininess n. A practical implementation for real-time graphics, in-
cluding horizon clipping, can be found in [Snyder 1996]. Despite
its accuracy, the method only works for Phong surfaces and its us-
age in real-time rendering applications is limited to weakly glossy
surfaces due its O(n) time complexity.

Spherical Gaussians (SGs). SGs are spherical functions used in
many lighting problems such as environment lighting or global il-
lumination with subsequent derivation for real-time area light illu-
mination. Wang et al. [2009] approximate a spherical area light
using an SG providing a closed-form expression for the integral
product with SG approximated BRDFs. To handle microfacet
BRDFs, the spherical warp introduced by the half vector trans-
form is approximated using a single isotropic SG. However this
method fails to represent the elongated specular stretches at graz-
ing angles. Xu et al. [2013] approximate the spherical warping us-
ing Anisotropic Spherical Gaussians (ASGs). A practical imple-
mentation for spherical light source illumination can be found in
[Tokuyoshi 2014]. These methods have two main limitations. First,
the spherical warp approximation supposes an isotropic light source
emitter. Second, highly glossy surfaces tend to reveal a Gaussian
shape due to the area light approximation as an SG. Close to our
approach, Xu et al. [2014] propose an analytic solution for inte-
grating an SG over a spherical triangle. The surface integral over
the triangle is decomposed as a sum of signed 1D integrals using
an original edge parameterization around the SG axis and evaluated
using a piece-wise linear approximation. The solution is restricted
to isotropic SG only and thus fails to properly render the typical
specular stretches of microfacet BRDF models.

3 Our approach

Our method builds upon Irradiance Tensors and the contour inte-
gration method developed by Arvo [1995b], that we briefly recall
in section 4. This approach represents two main challenges.

The first challenge is to get around the O(n) time bottleneck for
real-time rendering efficiency. We tackle this problem by rewrit-
ing the 1D integrals in a more concise way (section 5) allowing
to settle for an accurate O(1) time approximation using a rational
peak shape integration framework (section 6). Unlike Chebyshev
or Fourier approximations, our approach is bound to only 1 or 2
rational functions and doesn’t suffer from any ringing artifacts.

The second challenge is to overcome the Phong BRDF restriction
and give support for more plausible BRDFs. The half vector param-
eterization found in microfacet theory introduces a spherical distor-
tion which can be difficult to predict using non isotropic polygonal
light sources. Based on observations from great circle distortions,
we can faithfully approximate this spherical warp using a polygonal
approach (section 7) in more flexible way than previous methods.

4 Irradiance tensors and the edge integral

The Irradiance Tensors developed by Arvo [1995a] provide a use-
ful framework for the analytic integration of polynomials over the
sphere S2. These polynomials correspond to nthorder monomial
expressions described by an axis-oriented cosine lobe distribution.
The integration of this expression over a subset ΩA ⊂ S2 yields to
the definition of nthorder axial moment about an r axis:

Mn(ΩA, r) =

∫
ΩA

(u · r)ndu (1)

Using tensors product and Stokes theorem, Arvo developed the ax-
ial moment into a 1D contour integration over the projected area
light boundary ΩA. Considering a polygonal light source, a closed-
form expression for the 1D integrals can be obtained following a



Figure 2: The integral of a cosine lobe distribution axis, oriented
toward r, over a spherical region ΩA is reduced to a 1D contour
integration over the boundary of ΩA. A closed-form expression is
given for polygonal light source using a parameterization of the ith

spherical edge in the local base vi, ti (the red dotted line depicts
here the great circle supporting the edge (vi, vi+1)).

parameterization of spherical edges along great circles (see figure
2). Let consider a polygon with m boundary edges. Following the
notations depicted in figure 2, the closed-form expression is given
as follow:

(n+1)Mn(ΩA, r) = z ΩA−
m∑
i=0

(ni · r)F (Φi, ci, δi, n−1) (2)

where ci =
√
a2
i + b2i , δi = tan−1(bi/ai) , ai = vi · r and

bi = ti · r , and where

F (Φ, c, δ, n) =

n−1+zn
2∑

k=0

c2k+1−zn

Φi−δ∫
−δ

(cosφ)2k+1−zn dφ (3)

with zn = 1 − (n mod 2). For a complete description of Ir-
radiance Tensors and how to come to this expression, the reader
shall refer to [Arvo 1995a] and [Arvo 1995b]. Note also we use a
slightly different notation compared to Arvo to ease the mathemat-
ical derivations further developed in the next sections.

The sum of 1D integrals in F is evaluated in closed-form using a re-
currence algorithm of complexity O(n) time per edge, n being the
Phong exponent. Implemented on a GPU, the method works well
for weakly glossy surfaces (n < 40) but the performance drops as
the Phong exponent increases, and becomes impractical for highly
glossy surface (n > 1000). To reduce the evaluation cost for high
Phong exponents, Arvo suggested early termination of the iteration
loop once a desired relative accuracy is reached. But, from our
experience, we observe severe performance drop-off, especially at
view grazing angles of the surface and caused by a high number of
iterations necessary to reach the desired accuracy. The difficulty to
predict the performance makes it a nonviable solution for real-time
rendering considerations. In a practical GPU implementation, the
edge integral F should be ideally evaluated in O(1) whatever the
Phong exponent.

5 Reformulation of the edge integral

We propose to replace the costly edge integral evaluation of equa-
tion 3 by a cheap and accurate analytic approximation that allows
constant time evaluation with any Phong shininess n. Setting an ac-
curate approximation requires the knowledge or at least the intrinsic

Table 1: Notations used throughout this paper.

Symbol Description
L(x,v) radiance scattered from point x toward direction v
ΩA region ‖ solid angle sustained by area light source A
n surface normal
v normalized view vector
r normalized reflected view vector
h normalized halfway vector given by (i + v)/|i + v|
vi spherical projection of the ith vertex of the polygonal

light
n cosine lobe exponent
ni edge outer normal given by (vi × vi+1)/|vi × vi+1|
ti edge tangent vector given by ti = vi × ni

Φi edge arc length
F spherical edge integral
F̃ approximated spherical edge line integral

characteristics of the integrand function. A common approach is to
probe the edge integrand to extract these characteristics. However,
in its present form, this requires the evaluation of the sum of the
integrand terms. We propose to rewrite the edge integral in a differ-
ent form in order to get a simpler and more compact expression. To
that end, we first introduce a term f and a temporary term q defined
as follow:

f(φ, c, n) =

{
c cosφ
1

q =

{
(n− 1)/2 if n is odd
n/2 if n is even

By switching the sum and integral operators and by using the terms
introduced above, the edge integral F defined in equation 3 can be
re-written as follow:

F (Φ, c, δ, n) =

∫ Φ−δ

−δ
f(φ, c, n)

q∑
k=0

(c cosφ)2k dφ (4)

The sum exhibits a geometric series of the form x2k with a generic
formula:

∑q
k=0 x

2k = (x2(q+1) − 1)/(x2 − 1). This allows us
to cancel out the sum and get a single function to integrate after
substituting the temporary variable q.

F (Φ, c, δ, n) =

∫ Φ−δ

−δ

(c cosφ)n+2 − f(φ, c, n)

(c cosφ)2 − 1
dφ (5)

This reformulation allows the evaluation of the integrand term in
constant time. Another advantage is that it enables smooth repre-
sentation of non n integer values, especially for low n exponents.
Though no indefinite integral exists, an accurate analytic approxi-
mation can be obtained from our reformulation.

6 Accurate analytic approximations

Let us consider the integrand term from the edge integral in equa-
tion 5:

I(Φ, c, n) =
(c cosφ)n+2 − f(φ, c, n)

(c cosφ)2 − 1
(6)

According to figure 3, we observe that the shape of I corresponds
to symmetric peak shape functions of various height and width de-
pending on parameters c, n having a minimum reached at φ =
±π/2 and a maximum at φ = 0.

The core idea of our method is to approximate I using peak shape
functions described by simple rational expressions with known an-
alytic integration. The approximation relies on a simple fitting pro-
cedure that maps a peak shape function to the integrand I charac-
teristics such as the minimum, maximum and width.



Figure 3: The edge integrand I reveals peak shape functions of
various height and width. The core idea is to approximate I using
a simple and integrable peak shape function with same character-
istics.

Figure 4: Approximation of the half width xw of integrand I for
various values of n odd (left) and n even (right).

Following equation 6, a closed formulation is given for the mini-
mum and maximum values:

Imin(c, n) =

{
0
1

Imax(c, n) =

{
cn+2−1
c2−1

n odd
cn+2−c
c2−1

n even

Half width estimation. The width is defined as the Half Width
at Half Maximum (HWHM) which corresponds to the abscissa xw
such as I(xw, c, n) = (Imax − Imin)/2. However, finding a closed-
form expression for xw is somewhat more difficult. Instead, we use
an empirical approximation from experimental measurements.

xw(c, n) ≈


π
3

√
1−

(
c− c

n

)2
n odd

π
4

(
1−

(
c− c

n−1

)2.5
)0.45

n even
(7)

Even if this is a rough estimation (figure 4), the fitting procedure,
described in next section, will guarantee that our approximation
will pass through the point (xw, I(xw, c, n)).

6.1 General integration framework

We derive a general framework for approximating and evaluating
equation 3 by means of generic peak shape functions. To that end,

we first consider a generic peak function P , defined by a minimum
Pmin, a maximum Pmax and width Pw. An accurate approximation
of I can be obtained by adjusting P to the same characteristics of
I . The fitting procedure consists in a scaling, offsetting and width
adjustment defined as follow:

Ĩ(φ, c, n) =
Imax − Imin

Pmax − Pmin
(P (φ, xw)− Pmin) + Imin

Note that function parameters have been omitted for brevity. We
can further reduce this expression by packing all the constant terms
together:

Ĩ(φ, c, n) = s P (φ, xw) + t (8)

with s = (Imax − Imin)/(Pmax − Pmin) and t = Imin − s Pmin.

A general solution for the evaluation of equation 3 is then given by:

F̃ (Φ, c, δ, n) = s

∫ Φ−δ

−δ
P (φ, xw) dφ+ tΦ (9)

6.2 Peak-shape functions approximation

We studied several peak shape function families P with indefinite
integrals simple enough to avoid time-consuming evaluation and
providing an accurate estimate of equation 6. We validated the ac-
curacy of our approximations with ground truth comparison by im-
plementing an energy-conserving single-axis Phong model using a
single-axial moment evaluation expressed as follow:

L(x,v) =

∫
ΩA

fPhong(i,v)(n · i)di = ρs
n+ 1

2π
Mn(ΩA, r) (10)

Horizon clipping. Horizon clipping takes into account the energy
loss when the area light is partially below the horizon. While the
clipping procedure was not explicitly addressed by [Arvo 1995b],
a practicable implementation can be found in [Snyder 1996]. We
adopt the same procedure in our implementations.

6.2.1 Lorentzian approximation

The simplest approximation can be found by means of a Lorentzian
peak shape function:

P (φ, c, n) =
1

1 + aφ2
with

∫
P =

1√
a

tan−1 (√aφ) (11)

We use the equation 7 to compute the fitting point I(xw, c, n) that
roughly corresponds to the half maximum of I . Solving the equa-
tion I(xw, c, n) = Ĩ(xw, c, n) yields to resolution of unknown pa-
rameter a.

a =
1− yw − 4xw

2

π2

yw xw2
with yw =

I(xw)− Imin

Imax − Imin

By replacing the integral term in equation 9 by the one defined in
equation 11, we obtain an analytic approximation for F evaluated
in constant-time:

F̃ =
s√
a

(
tan−1 (√a(Φ− δ)

)
− tan−1 (−δ√a)) + t Φ

Noting that tan−1 x − tan−1 y = tan−1
(
x−y
1+xy

)
mod π, this ex-

pression can be further reduced into a single arctangent evaluation
to save GPU instructions.

F̃ =
s√
a

tan−1

( √
aΦ

1 + a(−δ)(Φ− δ)

)
mod π + t Φ (12)



Figure 5: Approximation of the edge integrand I using peak shape
functions for various values of c and n. The Lorentzian function ap-
proximates edge integrands fairly well but lacks accuracy in the tail
of I . The Lorentzian-Pearson better approximates I , but it remains
inaccurate for large width values. The ellipsoid approximation pro-
vides the best accuracy whatever the width of the function.

Error analysis. The figure 6 shows that the Lorentzian approx-
imation is fairly accurate and close to the ground truth whatever
the roughness of the surface. However, we can observe slight light
leaks around the highlight shape most noticeable when increasing
the overall intensity. A careful observation of the Lorentzian ap-
proximation plots in figure 5 shows that the error results from an
overestimation of the function I around the tail.

6.2.2 Lorentzian - Pearson VII approximation

A better approximation around the tail can be found by combining
the Lorentzian function with a second peak function with a shorter
tail. The idea is to encompass the integrand function in the tail
area with these two approximations and find a blending factor from
values picked in the tail. The second peak function is defined by a
Pearson VII function corresponding to a Lorentzian function raised
to a power m. We chose m = 2 which has an indefinite integral
simple enough to avoid time-consuming computations:

P =

(
1

1 + bφ2

)2

and
∫
P =

φ

2(b+ φ2)
+

tan−1
(
φ√
b

)
2
√
b

The Pearson VII function behaves exactly like a Lorentzian func-
tion on its superior part and has a shorter tail in its bottom part.
However, finding the b parameter, such as Ĩ(xw) = I(xw) requires
the resolution a polynomial equation of degree 4 involving complex
computations. Fortunately, it turns out that the computation of b can
be greatly simplified and save GPU computation time by reusing
the a parameter computed for the Lorentzian approximation. From
our experiments, we found that b ≈ a/2 always enclosed the target
integrand function I .

Linear blending Adjusting IP to the same width than I gives us
another approximation that underestimates I in the tail while pre-
serving the fitting above it. The best approximation then sits be-
tween the two functions and can be found using a simple linear
blending operation.

ĨLP (φ) = αĨL(φ) + (1− α)ĨP (φ) (13)

where

α =
ĨP (xtail)− I(xtail)

ĨP (xtail)− ĨL(xtail)

The linear blend operation requires the evaluation of the integrand
function I at a position xtail located in the tail of the function. How-
ever, finding a closed-form expression for xtail represents the same
difficulty as for the half width estimation. Again, we use instead an
empirical approximation:

xtail ≈ xw + 0.3946 xw(0)
(
1− (1− xw/xw(0))12) (14)

Approximation accuracy. The Lorentzian-Pearson approximation
greatly improves the overall accuracy of the specular highlight and
suppresses most observable artifacts. Although, we still experience
subtle light-leaks on areas located outside the specular highlights as
shown in figure 6. These leaks are occurring when the peak shape I
is very large, i.e. when the value c is small. A closer look at the plot
in figure 5 shows that the approximation is overestimated at integra-
tion domain bounds. Especially, at φ = ±π/2, the first derivative
is null while the Lorentzian-Pearson approximation is not.

6.2.3 Ellipsoid approximation

A better accuracy, especially at domain bounds, can be obtained
using ellipsoid-based peak shape functions. These functions have
the interesting property to behave like a Lorentzian but having a
null first derivative at φ = ±π/2.

Ellipsoid function:

PE =
a

1 + (a− 1) cos2(φ)
;

∫
PE =

√
a tan−1

(
tanφ√
a

)
(15)

Square Ellipsoid function:

PE2 =

(
b

1 + (b− 1) cos2(φ)

)2

;∫
PE2 =

√
b

2
(b+ 1) tan−1

(
tanφ√

b

)
− b

2c
(b− 1) sin(2φ)

(16)

We follow exactly the same procedure described in sections 6.2.1
and 6.2.2 to fit IE and IE2 to I and find the best approximation
using a linear blending. The parameter a for the first approximation
IE corresponds to:

a =
yw(1− cos(φ)2)

cos(φ)2(1− yw)
(17)

For IE2 , parameter b roughly follows b ≈ a
(

2.1 + 1.28 xw
xw(0)

)
.

Approximation accuracy. The ellipsoid approximation provides
the best accuracy whatever the width of the function with unnotice-
able artifacts as illustrated in figure 6.

6.3 Performance vs accuracy analysis

We implemented and tested our approximations on a GPU NVIDIA
GTX 580. The table 2 provides the rendering times in millisec-
onds per edge along with rendering accuracy measurements using a
normalized RMSE. Measurements were done considering the pro-
cessing of all screen pixels, representing the most critical case, at
a 720p resolution. Note that the timings also includes the double
horizon clipping around n and around r.



Lorentzian

Lorentzian-Pearson VII

Ellipsoid

Arvo (ground truth)

Source image Specular contribution ×10

Figure 6: Comparison of our approximations to the ground truth.
The right column depicts a scaled version of the images on left
one, so as to make differences visible. While light leaks are clearly
visible for the Lorentzian and slightly visible for the Lorentzian-
Pearson, they are hardly noticeable on the scaled version for the
ellipsoid approximation.

As expected, the rendering times obtained with Arvo’s solution in-
creases with the exponent n, while remaining constant with our
approximations. The Lorentzian approximation achieves the best
performance while the ellipsoid is the most accurate with unnotice-
able difference with the ground truth with a small computational
overhead introduce by a GPU time-consuming tangent evaluation.
The Lorentzian approximation can be sufficient most of the time for
high performance demanding application such as games. For high
quality demanding applications such as lighting pre-viz for produc-
tion rendering, the Lorentzian-Pearson or the ellipsoid approxima-
tion are the best choices.

7 Extension to microfacet BRDFs

The limitation to the Phong specular BRDF is a hard constraint for
Irradiance Tensors. Most production renderers and modern real-
time rendering engines makes use of physically based BRDFs built
upon the microfacet theory. Rough surfaces rendered with a mi-
crofacet BRDF exhibits longer specular stretches, more representa-
tive of the real phenomenon. The core of the theory relies on the
definition of the half vector h linking the microgeometry variation
with the incoming radiance and the viewing direction. Another key
aspect is the definition of the normal distribution function D(h),
responsible for the shape and the brightness of specular highlights.
In this section, we demonstrate that microfacet BRDFs can be well
approximated using Irradiance Tensors theory. Combined with our
approximations, we propose a method that can accurately repre-
sent the highlight shape, especially the elongated specular stretches
viewed at grazing angle, as predicted by the microfacet theory, and
at a quality close to the ground truth.

Let consider the axial moment expressed in the half vector space.
Following equation 1, this corresponds to the integration of the well
known Blinn-Phong distribution DBlinn

(n+ 1)Mn(Ω′A,n) =

∫
Ω′

A

(h ·n)ndh =

∫
Ω′

A

DBlinn(h)dh (18)

Table 2: Rendering times on a GPU NVIDIA GTX 580 and accu-
racy measurements for the Phong specular area lighting approxi-
mation.

Method Exponent Time/edge (ms) RMSE

Arvo (exact)
n = 100 13.6 n/a
n = 500 49 n/a
n = 5000 476 n/a

Lor approx
n = 100 0.25 0.00435485
n = 500 0.25 0.00550697
n = 5000 0.25 0.00412812

Lor-Pear approx
n = 100 0.40 0.0036481
n = 500 0.40 0.00309434
n = 5000 0.40 0.00255103

Ellispoid approx
n = 100 0.47 0.00150085
n = 500 0.47 0.00165298
n = 5000 0.47 0.00101419

Figure 7: Left: the area light’s vertices projected in half vector
space introduce distortions. Middle: our edge splitting strategy
overcomes the distortion by best approximating the spherical warp
for each shaded pixel using only one split. Right: the reference
image.

Given that dh = di/(4(h·v)) [Wang et al. 2009], this is equivalent
to integrating: ∫

ΩA

(n+ 1)
DBlinn(h)

4(h · v)
di (19)

Integrating the axial moment in half vector space requires the prior
knowledge of the transformed spherical region Ω′A. A naive ap-
proach can consist in performing the half vector transform on
boundary edge vertices, and evaluate the 1D integral on the newly
transformed edges. But as illustrated in figure 7, specular highlights
get distorted by the warping distortion introduced by the half vec-
tor parameterization. Another possibility is to consider a regular
sampling of each edge, but it would require a time-consuming per
edge evaluation. Previous methods like [Wang et al. 2009] try to
approximate this distortion using anisotropic kernels but it assumes
prefect isotropic light emitters only suited for spherical area lights.
In our case, the polygonal area lights are not restricted to a specific
shape.

7.1 Approximating the half vector warp distortion

Finding a suitable edge parameterization in half vector space, where
axial moment computations can apply, is not straightforward. How-
ever, a good approximation can be found. Intuitively, we observe
that the distortion reaches its maximum at grazing angle, corre-
sponding to situations where the normal ni approaches the surface
normal axis n.



Algorithm 1: Edge splitting procedure

for each shading point and each spherical edge vi, vi+1 do
Orthogonally project r to the edge plane with normal ni at

point p
Normalize p
Do the half transform of vertices vi, vi+1 → v′i, v

′
i+1

if p ∈ vi, vi+1 then
Split edge at p
Do the half transform p→ p′

Evaluate edge integral for v′i,p and p, v′i+1

else
/* Do not split */
Evaluate edge integral v′i, v

′
i+1

Figure 8: Illustration of spherical distortion gc′ on the great circle
gc produced by the half vector transform. The distortion get its
maximum for grazing viewing angles at p′ which correspond to the
transformation of point p, aligned with the viewing reflection r.

Edge splitting strategy. To give the intuition of our method, let
consider the great circle gc sustained by a spherical edge and gc′

it’s half vector transformation. If we look at the distortion intro-
duced by the half vector transformation in figure 8, we observe that
gc′ is bent toward the normal axis of gc, with a maximum elevation
located at p′, and aligned with the viewing vector v. A simple ex-
planation is that the widest angle spawned by gc with the viewing
vector v is found at p. In other words, in the direction of r. This
simple observation is the core idea of our edge splitting strategy.
Choosing a split position at p will always ensure to get the maxi-
mum distortion for an edge in half vector space. The strength of this
approach is that a single split is required. Moreover, if the position
p is located outside the spherical edge, no split is required and the
computational overhead of our solution is greatly reduced. The full
edge splitting procedure is described in the algorithm 1.

7.2 Integration of microfacet specular distributions

Other microfacet distribution functions found in literature can be
fairly well approximated and integrated by means of axial moment
over a spherical region.

Beckmann Approximation. The Beckmann distribution is a peak
shape that roughly corresponds to a Blinn-Phong distribution for
roughness values m < 0.5. A decent integration approximation,
using a singe axial moment, can be obtained by mapping the Beck-
mann roughness m to the cosine power exponent n. Noting that

n ≈ 2/m2 − 2, we obtain:∫
Ω′

A

DBeckmann(h) dh ≈
(

2

m2
− 1

)
Mn(Ω′A,n) (20)

GGX approximation. The Towbridge-Reitz distribution (GGX)
[Walter et al. 2007] corresponds to an ellipsoid peak shape with
a wider tail compared to the Blinn-Phong and Beckmann distribu-
tions. Specular highlights are smoother and closely match experi-
mental measurements from real materials. We can reproduce this
smooth effect by combining a second axial moment with a wider
distribution. Noting that DGGX(0) = c−2 and DGGX(1) = c2, the
integration of the GGX distribution term can be approximated as
follow:∫

Ω′
A

DGGX(h) dh ≈ c2 Ω′A + (
1

c2
− c2)(αMn2(Ω′A,n)+

(1− α)Mn1(Ω′A,n))

(21)

From our experiments, we found that with α = 0.3, n1 = 2
c2
− 2

and n2 = n1/10 we obtain a fairly good approximation, whatever
the eccentricity parameter c.

7.3 Error analysis and performances

We implemented and tested our solution on a GPU NVIDIA GTX
580. Timings and accuracy measurements in table 3 were measured
using the Lorentzian-Pearson approximation. We also compared
our solution with reference images obtained using dense area light
sampling. As shown in figure 1-c, the elongated specular stretches
predicted by the microfacet theory are faithfully reproduced with an
accuracy close to the ground truth. We just note a slight underesti-
mation in terms of brightness in reflection borders for low range n
values induced by the one-split approximation. In contrast to Phong
surfaces, only one horizon clipping is performed around n. Com-
bined with our low-cost edge splitting approach, our solution has a
limited computational overhead.

Table 3: Rendering times per edge and accuracy measurements for
microfacet specular distribution using n = 500 and the Lorentzian-
Pearson approximation

Spec.D Time/edge (ms) RMSE
Phong 0.40 0.00309434

Blinn-Phong 0.51 0.00435485
GGX 0.91 0.0036481

8 Spherical and disc area lights support

We propose a simple extension for specular surfaces lit by a spheri-
cal or a disc area light that can be extended also for diffuse surface.
Our method is inspired by optical illusions produced by high-speed
spinning rotations.

Spinning algorithm. The idea, depicted in figure 9, is to give the
illusion of a sphere or a disc by considering the spinning of a k-
sided polygon around a central axis. For a sphere, the central axis
ns corresponds to the direction pointing towards the sphere cen-
ter (figure 9-left). For a disc, the central axis nd corresponds to
the centered disc normal (figure 9-right). The orientation of the
polygon is computed at each shading point and is aligned with the
viewing reflection vector r. This is achieved by setting the position
of the first vertex v0 such as v0 = (ri − cA)/|ri − cA| where
ri is the intersection point between the light plane and the r line.



Figure 9: Description of our spinning approach. We give illusion of
a sphere or a disc by considering the spinning of a k-sided polygon
around a central axis. The angular spin is driven by the viewing
reflection vector r

Non-uniform scaling operation are simply supported by just consid-
ering the inverse light transform operation on the reflection vector r.
Note that [Arvo 1995a] gives a closed-form expression for the axial
moment over a spherical region but it yields to other mathematical
developments. Our solution uses the same polygonal framework
taking advantage of the previous approximations with little addi-
tional work.

Performance and accuracy. Our spinning approach (see figure 1-
d) provides convincing specular highlights for spherical and disc
area light sources with k = 4. The cost of evaluation is roughly the
same as for a 4-sided polygon. However, we observe differences in
the highlight intensity at the boundary of the disc due to the area
difference between the theoretical disc and the polygonal approxi-
mation. Windowed by the specular lobe eccentricity, this difference
is even worse as the viewing reflection r moves toward the border
of the disc.

9 Conclusion

We presented efficient and accurate analytic approximations to esti-
mate specular illumination from area light sources for high quality
demanding real-time applications. We first demonstrated that the
edge integrals of Arvo can be accurately approximated and eval-
uated in constant-time using a novel integration framework based
on rational peak shape functions. We also demonstrated that the
Phong restriction can be overcome using an approximation of the
half vector warp distortion based on a simple edge splitting strategy.
By combining one or several cosine lobe functions, a broad range
of microfacet BRDF models can be implemented with very small
computational overhead. Finally, using a novel spinning method,
we provided support for spherical and disc area light sources at
roughly the same cost than 4-sided polygons evaluation.

Some challenges still remain that would be worth exploring in the
future. First, soft shadows are ignored with our method. One so-
lution would be to back-project the scene geometry onto the area
light and perform a negative contour integration along the geom-
etry silhouette. Textured area lights is also a hard problem for
which no satisfying solution exists yet. One possibility with our
approach is to modulate the specular term with pre-integrated mip-
mapped textures as done in [Drobot 2014]. One other approach
would be to look for the varying luminaries derivations introduced
by Arvo [1995a] and developed by Chen and Arvo [2000]. Fi-
nally, some broader lighting problems such as real-time environ-
ment lighting or interactive Global Illumination would be interest-
ing to address. We believe that our approximation framework can
be particularly well adapted to these techniques and may overcome
some of the issues encountered with Spherical Gaussians or VPLs
approaches.

References

ARVO, J. 1995. Analytic methods for simulated light transport.
PhD thesis, Yale University.

ARVO, J. 1995. Applications of irradiance tensors to the simulation
of non-lambertian phenomena. In SIGGRAPH’95, 335–342.

ARVO, J. 1995. Stratified sampling of spherical triangles. In SIG-
GRAPH ’95, ACM, New York, NY, USA, 437–438.

BAO, H., AND PENG, Q. 1993. Shading models for linear and area
light sources. Computers Graphics 17, 2, 137 – 145.

CHEN, M., AND ARVO, J. 2000. A closed-form solution for the
irradiance due to linearly-varying luminaires. In Eurographics
Workshop on Rendering Techniques 2000, 137–148.

DROBOT, M. 2014. Physically based area lights. In GPU Pro 5,
67–100.

KARIS, B. 2013. Real shading in unreal engine 4. In part of ACM
SIGGRAPH 2013 Courses, SIGGRAPH ’13, 22:1–22:8.

KELLER, A. 1997. Instant radiosity. In SIGGRAPH ’97, 49–56.

NICHOLS, G., AND WYMAN, C. 2009. Direct illumination from
dynamic area lights. In SIGGRAPH ’09: Posters, SIGGRAPH
’09, 82:1–82:1.

PICOTT, K. 1992. Extensions of the linear and area lighting mod-
els. IEEE Computer Graphics and Applications 12, 2, 31–38.

POULIN, P., AND AMANATIDES, J. 1991. Shading and shadowing
with linear light sources. Computers & Graphics 15, 2.

RITSCHEL, T., GROSCH, T., KAUTZ, J., AND SEIDEL, H.-P.
2008. Interactive Global Illumination based on Coherent Sur-
face Shadow Maps. In Graphics Interface, 185–192.

SNYDER, J. M. 1996. Area light sources for real-time graphics.
Tech. rep.

TANAKA, T., AND TAKAHASHI, T. 1997. Fast analytic shading
and shadowing for area light sources. Computer Graphics Forum
16, C231–C240.

TOKUYOSHI, Y. 2014. Virtual spherical gaussian lights for real-
time glossy indirect illumination. In SIGGRAPH Asia 2014
Technical Briefs, SA ’14, 17:1–17:4.
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