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(a) Ecto-1 render on CPU (b) Ecto-1 render on GPU

Figure 1: An equal sample comparison (256 samples per pixel) of CPU vs GPU renders of the Ecto-1 vehicle from Ghostbusters:
Frozen Empire ©2023 CTMG, Inc. All Rights Reserved. The GPU has noticeably brighter reflections in the windows. The GPU
render was approximately 8x faster.

ABSTRACT
We ported the Sony Pictures Imageworks version of the Arnold
Renderer to the GPU using NVIDIA’s OptiX ray tracing toolkit.
This required modifying algorithms to run efficiently on the GPU,
the use of new software methodologies to better share source code
between the host and device renderers, and a reevaluation of what
contributes to poor performance on the device. We share here
the key decisions we made to overcome these challenges and the
valuable lessons we learned during our journey in implementing
the Sony Pictures Evolved Arnold Renderer (Spear) on the GPU.

CCS CONCEPTS
• Computing methodologies→ Ray tracing.
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1 INTRODUCTION
The Sony Pictures Imageworks (SPI) version of the Arnold Ren-
derer [Kulla et al. 2018] is a highly parallel and efficient CPU-based
path tracer that has been used in over fifty feature motion pictures.
Artists at Imageworks use Arnold to perform look-development
(a.k.a. “lookdev”) and lighting in an interactive/live-rendering envi-
ronment from within the Katana lighting package. While we had
monitored the “pulse” of ray tracing on the GPU over the years, it
was the introduction of NVIDIA’s Turing microarchitecture with
hardware ray tracing in 2018 that demonstrated to us compelling
evidence to port the SPI Arnold renderer to the GPU.

We saw a number of benefits of porting SPI Arnold to the GPU.
We wanted to build upon the productivity increase we saw when
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our artists started using SPI Arnold’s live-rendering features by
providing them with even faster tools. And as USD/Hydra [Pixar
2016] becomes more widespread at our facility via DCC integration,
we wanted to offer faster and better renders in these contexts that
were also more consistent throughout the pipeline. There was also
the possibility that as we reworked algorithms to be more amenable
to running on the GPU that the CPU-side might benefit as well.

Early during the development of our port to the GPU we set
the goal that our first users would be lookdev artists because of
the simpler lighting set-ups and smaller environments they use
compared to lighters. We also decided to add GPU support to our
renderer instead of writing an entirely new tool because we felt it
gave us the greatest chance of success in matching the look of the
CPU renderer since artists are very sensitive to changes in looks.
We believed if we could share code and algorithms between CPU
and GPU, then that would give us the greatest chance of matching
feature and image parity between the two renderers (a strategy
taken by “XPU” renderers as described in Section 2). While we knew
we could not reach 100% feature parity with the software renderer,
there were some features which were non-negotiable: texturing
support, hair rendering, AOVs, homogeneous participating media,
and the OSL [Gritz et al. 2010] shading system upon which our
facility shading library is built.

SPI’s version of Arnold is based on a fork of the commercial
Arnold Renderer [Georgiev et al. 2018], independently developed
and evolved at SPI since around 2009. As such, our renderer contains
a novel GPU implementation which we are calling Spear, which
stands for Sony Pictures Evolved Arnold Renderer.

This article describes the journey we took in adding GPU support
to our renderer. We will cover some of the lessons we learned to
maximize performance and maintain feature parity. Some of this
necessitated the rethinking of core algorithms to make them more
GPU-friendly and also making contributions to 3rd party open
source projects.

Throughout this work, we will try to adhere to the following
terms: “host” refers to the CPU, “device” refers to the GPU, and we
will use “platform” to denote the environment where code runs,
such as on the host (CPU) or device (GPU).

2 BACKGROUND
Many GPU-based ray tracing renderers, ranging from academic
research tools to applications for film production, are based on
NVIDIA’s CUDA [Kirk 2007] toolkit, which is a set of libraries,
compilers, and development tools for writing kernels that execute
on GPU hardware.

CUDA was followed by OptiX [Parker et al. 2010], a ray tracing
API specifically for NVIDIA’s GPUs. OptiX provides ray tracing
“building blocks” such as BVH builders for triangles and curves,
ray-geometry intersectors, the ability to call user-supplied kernels
for launching rays, processing ray-geometry intersections, misses,
etc. The kernels are written with CUDA and run on the GPU device
and can take advantage of NVIDIA’s ray tracing hardware.

DXR [Microsoft 2018] and Vulkan [Khronos Group 2016] are
two other ray tracing APIs with hardware support, but they were
quickly ruled out due to our specific needs: DXR only runs on
Windows and we are a Linux facility; and while Vulkan [Khronos

Group 2016] runs on Linux it does not have native motion blur
support. Therefore, we settled on CUDA and OptiX.

Several feature film production ray tracers such as Pixar’s Ren-
derMan [Christensen et al. 2018] and Dreamworks Animation’s
MoonRay [Lee et al. 2017] have “XPU” technology meaning that
both the CPU(s) and GPU(s) can render a frame collaboratively to
improve performance. But we decided against this approach be-
cause we felt the relatively small performance bump one would get
by adding the system’s CPU to a GPU with hardware-based ray
tracing would not be worth the added code complexity; the faster
the GPU implementation relative to the CPU, the less of an impact
a CPU contribution would have. We feel this decision was validated
by the results discussed in Section 13.

3 SHARING CODE IS HARD
We set a mandate that Spear would be a single application capable
of rendering either on the CPU or GPU (but not necessarily both
simultaneously). As such, we began this project with the noble
intention of sharing as much code as possible between the two
rendering engines, with the expectation that sharing code would
help us attain our goal of 1:1 look parity (modulo pixel color differ-
ences caused by LSB floating-point differences in the calculations)
by sharing algorithms between the rendering platforms. Because
our CPU rendering engine is written in C++, we thought shar-
ing code with the GPU, which is built with CUDA C++, would be
straightforward—one simply puts platform-agnostic code in header
files which are included by platform-specific .cpp and .cu files!
However, we quickly found it was much faster and easier to rewrite,
or cut-and-paste, rendering code than it was to disentangle algo-
rithms from their associated data structures, especially since many
of those structures contained data which did not need to be resident
on the device and would occupy precious RAM. Over time, how-
ever, we have been cleaning up our data structures and adopting
software patterns to help our code consolidation efforts.

First, we needed to remove virtual methods and recursion from
many of our host-side designs due to the difficulty, or inability,
of supporting those features in device-side kernels. Those were
replaced with switch/case alternatives where we made sure they
were not re-entrant. The same new pattern was also adopted on the
host-side codepaths to avoid code duplication. The second challenge
was that many elements/algorithms, which would be the same on
both the CPU and GPU, differ only in their lower level operations.

We found the CRTP (“curiously recurring template pattern”)
idiom, shown in Listing 1, to be useful for specifying shared algo-
rithms and data structures in some base class, and then specifying
the platform-specific code in a derived class (i.e. host or device)
which the shared algorithms could call. This gives us the effect of
having virtual function calls for our different architectures which
are resolved at compile time without incurring any runtime penalty
or memory overhead. The result is a collection of templates that
expand to slightly different implementations for the CPU- and GPU-
codepaths. This way, developers write the code only once and the
compiler tailors it to the particular platform for us.

Finally, there is a recurring design pattern used for nearly every
object and data structure we need to upload to GPU due to our desire
to minimize their use of explicit pointers. We used an approach
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t emp l a t e <typename T>
c l a s s Common
{

/ / sha red / common methods and data , c a l l
/ / f u n c t i o n s l i k e t h i s :
f l o a t 3 l o okup_ t e x t u r e ( f l o a t 2 uv )

{ r e t u r n T : : l o okup_ t e x t u r e _ imp l ( uv ) ; }
}
c l a s s CPUPlatform : p u b l i c Common<P la t fo rm >
{

/ / p l a t f o rm (CPU/GPU) s p e c i f i c code
f l o a t 3 l o okup_ t e x t u r e _ imp l ( f l o a t 2 uv )

{ . . . } / / Ac tua l imp l emen ta t i on
}
Common<CPUPlatform > cpu ; / / In CPU code
Common<GPUPlatform > gpu ; / / In GPU code

Listing 1: CRTP example in C++

where we store data in contiguous blocks of memory, and pointers
to that data are computed on the fly via offsets. It could be defined
as data-oriented, trivially relocatable design. Data structures such
as trees, sampling tables, and even hash tables, can be packed into
a single block of memory when coupled with methods that provide
the correct offsets to desired fields. These blocks can be allocated
and easily copied between platforms (or just elsewhere in memory)
with a single operation and be expected to work without tediously
patching pointers.

4 DATA COHERENCY FOR THEWIN
Early in the development for the GPU’s rendering engine we had
both “megakernel” and “wavefront” [Laine et al. 2013] ray tracing
implementations. The megakernel-based engine was similar to our
host-side implementation where each thread iteratively traces a
ray, evaluates shaders, trace more rays, etc. The wavefront imple-
mentation, in contrast, would trace a “wave” of rays, sort the hits
based on some criterion, evaluate shaders, then trace another wave
of rays, etc. We found the wavefront implementation was substan-
tially faster, by a factor of up to 2x. Eventually we learned that
this was because computation time per path segment was invariant
to scene depth in the wavefront architecture, but would suffer in
the megakernel as we increased maximum depth. This was due to
more and more threads being idle from their paths ending as depth
increased. In fact, one thread in a warp with high depth could hold
the other 31 completed threads idle as it completed its integration.

However, maintaining two different ray tracing codepaths was
cumbersome. We removed the wavefront implementation after find-
ing that we were able to attain its performance in our megakernel
codepath by introducing sample depth coherency to nearby pixels,
which substantially sped up renders at the cost of some increase in
noise. To do this, our Russian Roulette implementation uses similar
“base” random numbers for blocks of pixels during each rendering
pass, and then “micro-jitters” each individual pixel slightly in the
same spirit as [Dufay et al. 2016].

4.1 Shader Execution Reordering
Version 8 of the OptiX toolkit introduced Shader Execution Reorder-
ing (SER) which allows the GPU to “sort” rays after a ray tracing
“traverse”. The hope is that by grouping “similar” rays together data

and execution divergence will be minimized during shader execu-
tion. Indeed, we found OptiX’s SER, with the default coherency
heuristics, increased performance by as much as 2.45x in some of
our production assets. We saw the most benefit in large outdoor
environments where some rays would immediately bounce into
the skydome and terminate, leaving their threads idle while other
rays in the warp could bounce many times.

Unfortunately, most of our artists are not able to utilize SER due
to a lack of available Ada-generation cards in our facility. We expect
to experiment further with OptiX coherency hints, and to explore
the relationship between SER and our sample depth coherency
technique, as more of our users acquire SER-compatible hardware.

5 COMPILE TIMES
Long compile times are a perennial gripe about developing for the
GPU. Unlike traditional host-side software which is compiled a
single time when the software is released to the facility, device-side
software is compiled twice: first, into a device-agnostic intermediate
representation (IR); and second, from this IR into device-specific
code. The first stage can be performed when the application is
built, but the second cannot because its output is specific to the
microarchitecture of the device it will be running on. This second
stage, performed by the device driver, occurs during the execution
of the application when it uploads the IR to the device. This “Just
in Time” (JIT) compilation can incur a several minute delay on
start-up because the entire device-side renderer, effectively, is being
compiled.

Hardware vendors attempt to ameliorate this JIT penalty by
caching the compiled device code into a database which is keyed
by the fingerprint of the IR. This works well as long as programs
always compile to the same IR.We also found that globally disabling
inlining reduced JIT times by 2-4x. This would hurt performance
by as much as 10x, but worked very well for iterative developer
builds.

5.1 Character String Hashes
Our facility’s shading library is built on top of OSL. When we
initially added OSL support to Spear, one component of the shading
library that we uploaded to the GPU was a global character strings
file which contained the device addresses of all the strings used by
shaders and the rendering system. Because its content depended on
the rendered scene, the file was constructed and compiled on-the-fly
at render time. This could introduce a start-up JIT delay since the IR
could change for each render launch due to the non-deterministic
addresses of the character strings in device memory. In other words,
we were defeating the driver’s caching mechanism!

We eliminated this start-up delay by changing how OSL dealt
with character strings. For GPU compilation, we changed OSL’s be-
havior to pass 64-bit character string hashes (based on the ustring
hash of the string) instead of char pointers. In addition to ad-
dressing the start-up delay, this change yielded a few other benefits:
string hashes become compile time constants (via constexptr func-
tions) which gives the optimizer more information to work with;
and we no longer need to upload strings to the GPU which saves
device space and reduces host-side code complexity. This work has
since been extended to apply to code generated for the CPU as well.
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(a) Slimer render on CPU (b) Slimer render on GPU

Figure 2: An equal sample comparison (256 samples per pixel) of CPU vs GPU renders of Slimer from Ghostbusters: Frozen
Empire ©2023 CTMG, Inc. All Rights Reserved. Note that the GPU does not always match the CPU 1:1 yet, as seen in the softer
specular highlights in the CPU render. The GPU render was approximately 6.9x faster.

The likelihood of experiencing a collision between 64-bit hashes
is extremely low, especially in a context where it would lead to an
actual image difference (such as due to texture names colliding). We
have run tests on production scenes and have not experienced any
collisions, but we do not enable the check by default to avoid slow-
ing down facility renders. However, we are aware of the possibility
and have plans to address it.

6 OSL REPARAMETERIZATION
Our artists light and lookdev interactively with “live rendering”
from within Katana. While our CPU-based renderer is fairly quick,
the GPU’s interactivity is so much faster that it revealed some of
the shortcomings in our Katana-to-Arnold translation plug-in and
forced us to rethink some of the decisions we made years ago,

When we first wrote the material handling portion of our Katana-
to-Arnold plug-in, we did the “easy” thing of deleting old material
shading nodes each time a material changed (either due to changes
in the shading graph or due to simple parameter edits) because
Katana lacks useful introspection to give us insight into what has
changed when an artist edits a material. This was a reasonable
choice at the time because we could avoid trackingmaterial changes.
And, it did not seem to have much of an impact on performance
because re-JITing shading networks for the CPU was fast.

On the GPU, however, things were different—a shading edit
would trigger shader recompilation and device re-JITing which
introduced a noticeable delay for artists. So, we finally added mate-
rial tracking logic that could distinguish between material network
changes and simple parameter edits. This allowed us to use OSL’s
“reparameterize” facility where changes to parameters which have
been marked as “editable” are copied to the appropriate slot in mem-
ory without the need to recompile the shaders. Changes on the
GPU-side became near instantaneous, and changes on the CPU-side
were noticeably faster, too. Shading network changes still need to
go through the usual compile/JIT cycle, however.

An important feature of OSL is its late-stage optimization after
the shader graph is connected and values of all shader parameters
are known. This runtime optimization is key to performance, and

since marking parameters as “editable” prevents them from being
constant-folded, it is important to keep the working set of editable
parameters at any one time restricted to only those parameters
likely to be interactively manipulated. Changing the set of cur-
rently editable parameters, just like changing the connectivity of
the shader node graph, requires a full re-JIT of the shader group.

7 STACK SIZE
One of the items which surprised us the most was the impact of
stack size on GPU renders. For host-side rendering, stack size is
something we never think about with the exception of occasionally
increasing the OS default. In a virtual memory system, the amount
of RAM dedicated to the stack by a host-side application with
tens, or even hundreds, of parallel threads is generally negligible.
However, when device-side code has, effectively, tens of thousands
of threads in flight, the memory dedicated to stack space can run
into the gigabytes—we were observing that device-side stack space
for a render of a production asset was taking over 12GB of device
RAM! Even if we were willing to pay that cost, our most complex
OSL shaders would occasionally cause us to surpass CUDA’s 64KB
stack limit, leading to un-renderable scenes.

7.1 Rethinking Data Structures
We tracked down significant stack consumption to some particular
software design patterns in the shading library used for passing
texturing parameters between shading nodes in a material network
which led to some large data structures. After working with the
shading team to implement a few fixes, we saw a reduction in shader
footprint 2-3x, which also sped up our renders by a remarkable
1.5-4x. We have continued to pare this down even further.

7.2 Updating OSL Device Entry Points
When we first added OSL support to Spear, the device-side entry
point to compiled OSL shaders required pointers to two buffers
which were provide by the renderer: a “group data” buffer where
OSL would store shader parameters, and a buffer where the shading
network returned its expression tree of closures. For performance
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(a) Carol model rendered at 256 samples per pixel on GPU (b) Carol model warp-cost heatmap

Figure 3: AGPU render of theCarolmodel fromTheMarvels©2023Marvel compared against ourwarp-cost heatmap visualization
on the right. The visualization shows that the most expensive areas of the image are where the hair and skin start overlapping,
leading to execution divergence even on primary rays.

reasons, we stored these two buffers on the stack to use the thread’s
local memory. This meant the buffers’ sizes needed to be specified at
compile time, and that forced us to plan for the worst case scenario
that we would expect to encounter when executing shaders.

We found some of our more complicated shading networks re-
quired a group data buffer of size 48-64KB which, when multiplied
by the huge number of in-flight threads, led to vast amounts of
memory set aside for shader execution. This was a performance hit
“twofer”: this reduced the amount of memory available for geometry
and texture storage, and it could also slow the execution of shaders
as it increased the amount of memory copying that happens as
threads are “shuffled” around during execution.

As we implemented more features on the device side and were
able to render more sophisticated production assets, we encoun-
tered shading networks requiring group data buffers on the order
of 96KB. At that point we finally accepted that fixed-size buffers
were not tenable, and we implemented a technique which we called
device-side “growable buffers”.

7.3 Growable Buffers
The basic concept of growable buffers is to reserve some small
amount of memory on the stack (per-thread) which could be used
for the group data buffer or closure storage. If more memory is
required, then we would overflow into a buffer allocated in the
device’s heap. If that heap pool is exhausted during rendering then
we will halt ray tracing and shading execution on the device, double
the size of the overflow buffer, and then relaunch the rendering
kernel.

The two growable buffer use cases, the closure pool and the
group data buffer, have slightly different specifications which affects
their implementations. In the case of closures, shaders allocate
space in the closure buffer during execution whenever they add a
new closure to the Cout output variable. This happens through a
function call into the device-side renderer services library which
makes it easy to control when to overflow into the heap-located
buffer and to signal that the heap buffer has been exhausted.

In contrast, the group data problem required a more complicated
solution which necessitated us making a few additions to OSL:

(1) OSL can now return the amount of group data space required
for a shader group;

(2) OSL now has responsibility for allocating the shading net-
work’s group data on the stack instead of the renderer; and

(3) the renderer can set an OSL attribute that will cap howmuch
group data space OSL will allocate on the stack and also pass
in a pointer to a heap-allocated “overflow” buffer via the
shading network’s entry point.

The group data change cut our memory requirements in half for
most scenes, since we no longer had to statically reserve enough
memory for our most complex shaders. This moved our memory
bottleneck away from the shaders, and onto the renderer itself.

8 STOCHASTIC SHADING
The development of Spear caused us to reevaluate some of the
original decisions we made while implementing the CPU renderer.
One of these was how to evaluate the closure trees returned by
shaders for illumination. The host-side renderer constructs BSDF
objects for each of the returned closures in the expression tree,
randomly selects one for next bounce sampling, and performs next
event estimation (NEE) for all of them. This is a common practice.

On the GPU, we found it very expensive and memory costly to
construct all of the BSDF objects returned in the closure expression
tree. Therefore, we introduced the concept of “stochastic shading”
where we randomly select one of the closures to construct from
the closure tree based on their albedos. And we do this greedily
using reservoir sampling so we only keep a single BSDF object at
all times.

We use the selected BSDF to sample the next bounce and also to
perform NEE. While this improved performance, it also increased
noise too much. We found that extending it to two BSDFs, one for
smooth specular lobes and one for rougher ones, provided a good
balance of noise reduction and performance improvement over the
single lobe method. We anticipate developing this approach further.
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(a) Warp visualization for a scene with low depth divergence

(b) Warp visualization for a scene with high depth divergence

Figure 4: Our warp visualization tool helped build intuition
about the relative costs of path computation and low thread
utilization. The different colors denote different stages of
integration. Both visualizations are generated with SER dis-
abled.

9 VOLUMES
On the CPU side, Arnold renders volumes via ray marching and
an MIS combination of density and equiangular samples [Kulla
and Fajardo 2012]. During ray tracing, we accumulate a list of
volumetric intersections, which is converted into a sorted list of
intervals over fixed volume segments. For each interval, we allocate
an array for accumulating density samples while marching along
the interval. The array’s size is proportional to the voxel density
of the volume. Later in the pipeline, we sample a scattering point
from the populated array.

In our GPU implementation of volumes, we opted to avoid grow-
able arrays, and changed the integration calculations to work with
a fixed memory footprint. This had two implementation conse-
quences:

(1) Instead of tracing one ray and returning a vector of hits, on
the GPU we trace and integrate one hit at a time.

(2) Instead of allocating an array to sample density, we tightly-
couple sampling and shading, and reservoir sample our shad-
ing point as we sample density. This works very well for
single volumes, but means that we have to invert our for-
loop when integrating segments containing multiple vol-
umes: instead of processing each volume in isolation, we
only loop over the marching steps once. This means that the
inner-loop samples each volume at each step, which is not
cache-efficient.

We took advantage of NanoVDB [Museth 2021] to both upload
and traverse voxels on the GPU. NanoVDB is a very successful ex-
ample of reallocatable data-oriented design from which we learned
a lot. Equiangular sampling is not yet implemented due to a shift
in priorities, but we are able to render dense fields like clouds or
smoke at a very high performance gain compared to the CPU.

10 AOVS
Arbitrary Output Variables (AOVs) allow artists to render different
geometric or shading components of a scene, facilitating complex
layer compositing in a single shot. On the CPU, each output al-
locates its own frame buffer, and multiple outputs can point to
the same AOV, but with different destinations, such as image files
or OpenGL textures. In addition, each output can have different
filtering properties that require additional memory resources. For
example, a depth filter retains the closest or farthest depth contri-
butions by storing depth values in a frame.

Such replication of memory across outputs is undesirable on the
GPU due to its limited memory capacity. To address this, we had to
rethink our AOV model to better mutualize and conserve memory
resources on the GPU. For example, two outputs pointing to the
same AOV but different targets now share a single frame buffer. For
depth filters, the memory resources are reduced to a single z-buffer,
and the discard decision is made only once for all outputs using
a depth filter. By rethinking our AOV model in this way, we have
been able to conserve GPU memory resources while still providing
artists with the functionality they need when rendering.

It should be noted that for outputs targeting CPU memory, we
make sure the memory is page-locked. This enables efficient DMA
(Direct Memory Access) transfers between the GPU and CPU, maxi-
mizing data transfer speed. This optimization is particularly critical
in real-time rendering applications where direct access to the GPU
memory might not be feasible.

11 DIAGNOSTIC TOOLING
When trying to analyze our GPU performance, NVIDIA’s nsight-
compute tool gave us valuable statistics related to occupancy, di-
vergence, cache utilization, and memory usage. But we struggled
to get top-down profiling analysis from the application similar to
what we get from VTune on the CPU.

Occasionally we wrote custom tools to answer our questions
about how our code was behaving on the GPU. One interesting
visualization logged the clock cycle that each thread hit for different
stages of integration (e.g., bouncing, shading, or shooting a shadow
ray). Combined with information about that thread’s SM, warp, and
lane, we could visualize what the GPU utilization actually looked
like over the duration of a frame’s computation.

This technique helped us learn about the relative costs of shad-
ing versus ray tracing on the GPU, and further illuminated the
negative effects of completed threads on sample throughput. Fig-
ure 4 compares a simple scene with a small set of materials and
low bounce counts to a complex outdoor environment with many
materials. Whitespace in the diagram indicates time where a thread
has no assigned work. Figure 3 shows a custom warp-cost heatmap
AOV assembled from the same data, highlighting which areas of
the image are the most expensive to render.

11.1 Visualizing OSL Shaders
One tool that proved its worth multiple times was an OSL shader
graph visualizer that let us examine the parameter costs of the
connections between layers in a shadergroup. Although production
graphs can be massive in size (see an example of a moderately
sized graph in Figure 5), being able to visually identify clusters of
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pref
ptrn_spi_point_pref_v1

srfRoot
arn_spi_srfRoot

objectScale
arn_spi_objectScale

params
arn_spi_solidUber

Ptrn____I____GLOBAL_NODE____I__GlobalTextureOptions__I__global_textureOptions
utl_spi_globalTextureOptions

Ptrn____I____GLOBAL_NODE____I__NormalMap__I__stPlaceholder
utl_spi_textureOptionsPort

Ptrn____I____GLOBAL_NODE____I__ColMap__I__color_texture
utl_spi_colorTexture

Ptrn____I____GLOBAL_NODE____I__Roughness1Map__I__float_texture
utl_spi_floatTexture

Ptrn____I____GLOBAL_NODE____I__BmpMap__I__shared_textureOptions
utl_spi_sharedTextureOptions

Ptrn____I____GLOBAL_NODE____I__BmpMap__I__simple_texture
utl_spi_floatTexture

Ptrn____I____GLOBAL_NODE____I__NormalMap__I__NormalMap
bmp_spi_normalMapping

normalParams
bmp_spi_normalAssignment

Ptrn____I____GLOBAL_NODE____I__ColMap__I__color_texture_CC
utl_spi_colorCC

Ptrn____I__Color__I___Pattern___I__ParamConnection
utl_spi_patternConnection

Ptrn____I____GLOBAL_NODE____I__Roughness1Map__I__float_texture_CC
utl_spi_floatCC

Ptrn____I____GLOBAL_NODE____I__Roughness2Map__I__float_texture_CC
utl_spi_floatCC

Ptrn____I__Roughness1__I___Pattern___I__ParamConnection
utl_spi_patternConnection

Ptrn____I__Roughness2__I___Pattern___I__ParamConnection
utl_spi_patternConnection

Ptrn____I____GLOBAL_NODE____I__BmpMap__I__bmpMap_accum
bmp_spi_accumFloatBmp

Ptrn____I____GLOBAL_NODE____I__BmpMap4__I__bmpMap_accum
bmp_spi_accumFloatBmp

Ptrn____I____GLOBAL_NODE____I__BmpMap3__I__bmpMap_accum
bmp_spi_accumFloatBmp

Ptrn____I____GLOBAL_NODE____I__BmpMap2__I__bmpMap_accum
bmp_spi_accumFloatBmp

Ptrn____I____GLOBAL_NODE____I__Bump__I__bmpRoot
arn_spi_bmpRoot

root
arn_spi_root

existence
arn_spi_existence

holdoutParams
arn_spi_holdoutParams

Ptrn____I____GLOBAL_NODE____I__mask_mouth_channel_twomaskDefine_mask_mouth_channel_two__I__aovAccum
utl_spi_accumAOV

Ptrn____I____GLOBAL_NODE____I__mask_all_channel_onemaskDefine_mask_all_channel_one__I__aovAccum
utl_spi_accumAOV

Figure 5: An example OSL shader graph. We annotated nodes with metrics such as parameter size to help track down clusters
of heavy layers and identify GPU anti-patterns that we pruned from our shader generation pipeline.

layers with heavy parameters was invaluable. In one case, we were
able to identify a large parameter array which could be reduced in
size (Section 7.1). In another, we realized we were writing constant
values over a parameter’s initial values in a way that OSL was
unable to optimize. In both cases, we saw significant performance
boosts with adjustments to our shader generation.

12 EXPECTING THE UNEXPECTED
Over the course of any large software project one must be open to
reconsidering choices made early in its development, and Spear was
no different. In addition to reconsidering our position on wavefront
ray tracing, as already mentioned in Section 4, there were several
other decisions where we needed to reevaluate and pivot.

12.1 Device-pointer abstraction
Early during the development of Spear, we introduced a device
pointer abstract data type. For device-side code, it would be inter-
preted as a typed pointer while on the CPU it would be interpreted
as simple pointer-sized integer. The rationale was that the compiler
could help enforce rules that pointers to device memory would
raise compilation errors when dereferenced on the CPU. On paper,
it seemed like a good idea but its use became such a hindrance that
we ultimately removed it. It had a complicated API for performing
“common” pointer operations such as fetching the typed pointer,
fetching the void pointer, performing pointer arithmetic, getting
a reference to the underlying pointer, etc. And it could not easily
be used in data structures that were shared between the CPU and
GPU platforms.

12.2 Shader Initiated Ray Tracing
Anecdotally, we heard that when first writing a GPU ray tracer,
one is amazed with the speed-up compared to a CPU-based ray
tracer. But as one slowly adds features to match CPU, the hardware
renderer begins to slow down and it is difficult to claw back those
performance gains. Thus, we told our shading team that we would
not support OSL’s trace() call on the GPU, thinking that shaders
using it would have terrible performance.

SPI’s facility shading librarymakes trace calls for features such as
estimating surface curvature, attaching shadow rays to projections,
and projecting room interiors for buildings. On a whim, we de-
cided to evaluate the performance hit of performing a simple trace()
call inside shaders on a variety of production assets, and we we
were pleasantly surprised by the modest slowdown it introduced—
roughly 5-10% on the scenes we tested.

12.3 Dipole SSS
We were hoping to “gently” retire our dipole subsurface implemen-
tation [King et al. 2013] from the facility, first by not supporting
it on the GPU followed by eventually removing it from CPU ren-
derer, because it is problematic on high-curvature geometry and we
thought we had a more robust SSS implementations, based on a real
medium random walk, that could yield a similar look. We thought
if artists became accustomed to not using it on the GPU due to the
GPU’s ray-tracing speed, then it would not be missed during offline
CPU renders on the render farm. However, we eventually learned
that some artists were preferring to lookdev on the CPU rather than
the GPU because of the missing dipole SSS; either they preferred
the “look” or convergence of the older SSS, or they were having
trouble matching assets and characters from previous shows, or
from outside clients, with the newer SSS models. For these reasons,
we will port this feature to the GPU after all.

(a) CPU render (b) GPU render (c) Difference image

Figure 6: Comparison of the CPU and GPU rendered Ecto-1
vehicle from Figure 1. The values in the difference image
have been scaled by 2x to accentuate the differences.

13 RESULTS
Objectively comparing performance between the CPU and GPU
implementations is not always straightforward. Both share light-
ing and shading code, but the top-level integrator is still different.
Hence they produce slightly different images. This is also due to
the unimplemented functionality on the GPU. Once everything is
supported on GPU this will be resolved by unifying everything. The
CPU integrator often generates better but more expensive samples
than the GPU. Comparing convergence rates is time-consuming,
and on the GPU we prefer a quicker frame to a longer, more effi-
cient frame in order to maximize interactivity. This is especially
true when the OptiX denoiser (see Section 13.1) is on, as it can clean
up much of the noise caused by the less efficient strategy.
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Table 1: Frame time averages for various benchmark scenes

scene cpu frame gpu frame speed-up
bucket 1525.1 ms 102.7 ms 14.9x

pot 1724.0 ms 103.8 ms 16.6x
elliot 1387.5 ms 110.0 ms 12.6x

breakfast 1402.5 ms 114.5 ms 12.3x
newsstand 766.4 ms 116.0 ms 6.6x

vehicle 2040.1 ms 127.3 ms 16.0x
resort 1402.7 ms 190.6 ms 7.4x

dining-room 1626.3 ms 194.9 ms 8.4x
hospital 2045.6 ms 229.8 ms 8.9x

classroom 2881.2 ms 274.2 ms 10.5x
pig 3609.5 ms 370.3 ms 9.8x

creek 3565.9 ms 426.4 ms 8.4x
Table 1 shows a direct comparison of frame times to get a general

idea of the performance benefits we see on the GPU. Because the
renders are not a strictly apples-to-apples comparison because
of the differences in integrators (and elsewhere), internally we
usually track the GPU’s performance over time against its previous
versions. One welcome side-effect of the GPU project has been
porting cheaper GPU sampling strategies back to the CPU, and
seeing efficiency gains there, as well (e.g., stochastic shading in
Section 8). All timings in this paper are comparing an NVIDIA RTX
6000 (Ada Generation) to a dual-processor Intel Xeon Gold 6226R
systemwith 64 threadswhich is typical of our lighters’ workstations.
We have also increased OptiX’s per-thread register count to 192
registers.

Figures 1 and 2 illustrate some side–by-side comparisons of
production assets rendered on the CPU and GPU. The images are
qualitatively very similar but the differences are obvious when
flipping between the two interactively. Some differences in the
“Ecto-1” vehicle are highlighted in Figure 6. As we consolidate code
and algorithms between the two rendering codepaths, we expect
these differences to lessen over time.

13.1 Enhancing the visual experience.
The integration of a denoiser pass using the OptiX AI-based de-
noiser into Spear significantly enhances the user experience by
eliminating noise on the fly during live editing scenarios. This en-
ables artists to work more efficiently and make more informed
decisions during the creative process. By leveraging the temporal
and upscaling features of the OptiX denoiser, we further improve
the denoising quality while doubling the rendering performance.
This is achieved by rendering at half resolution and then upscaling
the image to its original size, which trades minor detail loss for a
2x speed boost—this is slower than the expected 4x performance
improvement due to the overhead of the denoiser itself and the
incompressible execution time of a GPU thread. It is noteworthy
that the denoiser pass is also available on the CPU, but the ability to
do instant denoising on a complete frame with Spear on the GPU,
as opposed to the legacy bucket rendering on the CPU, delivers a
far more engaging experience for the lookdev artists.

14 CONCLUSION
We have enjoyed the process of creating our GPU-based renderer,
Spear. The journey has been frustrating at times, partly due to de-
velopment tools that are not as capable as their counterparts for
CPU-side software development and partly due to our intuition
sometimes failing us as we try to rationalize performance regres-
sions. But we cannot say it has not been educational. We have
re-architected algorithms to be GPU-friendly, embraced software
patterns to maximize code reuse between our CPU and GPU ren-
derering engines, and developed new diagnostic tools to measure
performance.

While we continue to improve performance and match feature
parity with CPU Arnold—the lack of deep output AOVs, pointcloud,
and bump-to-roughness [Olano and Baker 2010] support are pri-
orities we’d like to address—artists have begun using Spear for
lookdev. Interestingly, we have learned that interactivity drives
more interactivity; as artists use the GPU they are finding that the
fast feedback they get quickly puts them in “the zone”, and any
delay which takes them out, such as having to restart the renderer
to enable a particular feature, is highly distracting.
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